Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jul 11;71(Pt 8):o564–o565. doi: 10.1107/S2056989015012840

Crystal structure of (E)-4-hy­droxy-3-{1-[(4-hy­droxy­phen­yl)imino]­eth­yl}-6-methyl-2H-pyran-2-one

Amel Djedouani a, Sihem Boufas b,*, Franck Cleymand c, Michel François c, Solenne Fleutot c
PMCID: PMC4571398  PMID: 26396798

Abstract

In the title Schiff base, C14H13NO4, which adopts the phenol–imine tautomeric form, the dihedral angle between the planes of the benzene and heterocyclic (r.m.s. deviation = 0.037 Å) rings is 53.31 (11)°. An intra­molecular O—H⋯N hydrogen bond closes an S(6) ring. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds to generate C(11) chains propagating in the [010] direction. A weak C—H⋯O link is also observed, leading to the formation of R 5 5(32) rings extending parallel to the (101) plane.

Keywords: crystal structure, hy­droxy Schiff base, pyran-2-one, phenol–imine tautomer, hydrogen bonding, proton-transfer processes

Related literature  

For photochromic and thermochromic properties of hy­droxy Schiff bases, see: Garnovskii et al. (1993); Hadjoudis et al. (2004). For potential materials for optical memory and switch devices, see: Zhao et al. (2007). For proton-transfer processes, see: Lussier et al. (1987). For Schiff base structures, see: Djedouani et al. (2007, 2008). For Schiff base bond lengths and angles, see: Girija & Begum (2004); Girija et al. (2004); Bai & Jing (2007).graphic file with name e-71-0o564-scheme1.jpg

Experimental  

Crystal data  

  • C14H13NO4

  • M r = 259.26

  • Monoclinic, Inline graphic

  • a = 7.8730 (5) Å

  • b = 11.7930 (8) Å

  • c = 13.5330 (8) Å

  • β = 99.896 (2)°

  • V = 1237.79 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.10 × 0.06 × 0.03 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002) T min = 0.875, T max = 0.947

  • 17976 measured reflections

  • 2582 independent reflections

  • 2061 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.148

  • S = 1.07

  • 2582 reflections

  • 173 parameters

  • All H-atom parameters refined

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: OLEX2.refine (Dolomanov et al., 2009); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012) and PARST (Nardelli, 1995).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015012840/hb7460sup1.cif

e-71-0o564-sup1.cif (14.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015012840/hb7460Isup2.hkl

e-71-0o564-Isup2.hkl (124.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015012840/hb7460Isup3.cml

. DOI: 10.1107/S2056989015012840/hb7460fig1.tif

The structure of the title compound in 50% probability ellipsoids.

S . DOI: 10.1107/S2056989015012840/hb7460fig2.tif

Part of the crystal structure of (I), showing the formation of S(6) rings with dashed red lines. N—H⋯O and O—H⋯O hydrogen bonds are shown as blue dashed lines.

CCDC reference: 1410367

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O1H1N1 0.82 1.83 2.560(2) 147
O2H2O1i 0.82 1.90 2.710(2) 169
C12H12BO3ii 0.96 2.55 3.137(3) 120

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by Université Constantine 1, DZ-25000, Constantine, Algeria.

supplementary crystallographic information

S1. Comment

Hydroxy Schiff bases have been extensively studied due to their biological, photochromic and thermochromic properties (Garnovskii et al., 1993; Hadjoudis et al., 2004). They are potential materials for optical memory and switch devices (Zhao et al., 2007). Proton transfer in these compounds forms the basis for an explanation of the mechanisms of various biological processes where proton transfer is the rate-determining step (Lussier et al., 1987). In general, O-hydroxy Schiff bases exhibit two possible tautomeric forms, the phenol-imine (or benzenoid) and ketoamine (or quinoid) forms. Depending on the tautomers, two types of intra-molecular hydrogen bonds are possible: O—H···N in benzenoid and N—H···O in quinoid tautomers.

As part of our ongoing studies of Schiff bases (Djedouani et al., 2007, 2008), we now describe the synthesis and the structure of the title compound, which takes the form phenol-imine and complete a six-membered pseudocycle via an intramolecular O—H····O hydrogen bond.

The dehydroacetic acid ring and phenyl ring are almost planer with r.m.s deviation for the mean plane are 0.0260 and 0.0027 respectively. The dihedral angle between the two rings is 53.30 (0.05) °. The two torsional angles τ1 (N1—C5—C14—C4) and τ2 (C5—N1—C1—C6) defining the confirmation of the molecule.

The N1—C5 distance of 1.324 (2) Å agree with similar bond in related compounds (Girija & Begum, 2004; Girija et al. 2004), slightly longer than a typical C=N bond (1.283 (4) Å) (Bai & Jing, 2007); but much shorter than the single carbon-nitrogen bond (Table. 1), N1—C1=1.432 (3) Å because of the resonance. The carbon-carbon bond connecting the phenol and imine groups exhibits intermediate distances between a single and a double bond and agree well with those observed in other azomethines. The C5—N1—C14 and C14—C5—N1 bond angle of 117.70 (2)° and 117.47 () ° respectively in the Schiff base ligand are smaller than typical hexagonal of 120°. This is due to the effect of substitution on O of pyron & OH of the DHA ring.

In the crystal, molecules are aligned head to foot along b axis, in columns along to [0 0 1] axis and the structure is stabilized by an O—H···O hydrogen bond and another weak C—H···O interaction, leading to the formation of R55(32) rings extending parallel to the (101) plane (Fig. 2, Table.1).

S2. Experimental

Compound (I) was prepared by refluxing a mixture of a solution containing dehydroacetic acid (0.01 mmol) and para-4-aminophenol (0.01 mmol) in ethanol (40 ml). The reaction mixture was stirred for 2 h under reflux and left to cool. Yellow crystals grew after a few days.

S3. Refinement

C—H and O—H hydrogen atoms were placed in calculated positions and refined as riding atoms with C—H distances of 0.93 Å with Uiso(H) = 1.2Ueq(C) and O—H distances of 0.82 Å, with Uiso(H) = 1.2Ueq(N).

The methyl H atoms were constrained to an ideal geometry (C—H = 0.96 Å) with Uiso(H) = 1.2Ueq(C), but were allowed to rotate freely about the C—C bonds.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound in 50% probability ellipsoids.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I), showing the formation of S(6) rings with dashed red lines. C—H···O and O—H···O hydrogen bonds are shown as blue dashed lines.

Crystal data

C14H13NO4 F(000) = 544.3271
Mr = 259.26 Dx = 1.391 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 0 reflections
a = 7.8730 (5) Å θ = 2.9–27.5°
b = 11.7930 (8) Å µ = 0.10 mm1
c = 13.5330 (8) Å T = 293 K
β = 99.896 (2)° Block, yellow
V = 1237.79 (14) Å3 0.10 × 0.06 × 0.03 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 2582 independent reflections
Radiation source: Enraf–Nonius FR590 2061 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
Detector resolution: 9 pixels mm-1 θmax = 26.7°, θmin = 2.3°
CCD rotation images, thin slices scans h = −9→9
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) k = −14→14
Tmin = 0.875, Tmax = 0.947 l = −17→17
17976 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148 All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0655P)2 + 0.6848P] where P = (Fo2 + 2Fc2)/3
2582 reflections (Δ/σ)max = 0.005
173 parameters Δρmax = 0.54 e Å3
0 restraints Δρmin = −0.37 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.6637 (2) −0.08723 (12) 0.50633 (10) 0.0520 (4)
H1 0.6696 (2) −0.05535 (12) 0.45317 (10) 0.0779 (6)*
O2 0.4993 (2) 0.21003 (13) −0.00201 (10) 0.0543 (4)
H2 0.4624 (2) 0.27519 (13) −0.00450 (10) 0.0815 (7)*
O3 1.0343 (3) 0.20593 (17) 0.65333 (13) 0.0814 (7)
O4 0.92760 (19) 0.08216 (12) 0.74439 (9) 0.0443 (4)
C1 0.6821 (3) 0.11371 (17) 0.29043 (13) 0.0390 (4)
C2 0.7568 (3) −0.07161 (18) 0.67874 (15) 0.0444 (5)
H2a 0.7031 (3) −0.13959 (18) 0.68968 (15) 0.0533 (6)*
C3 0.6279 (3) 0.07382 (18) 0.11415 (14) 0.0433 (5)
H3 0.6333 (3) 0.02421 (18) 0.06136 (14) 0.0520 (6)*
C4 0.7488 (3) −0.03156 (16) 0.57810 (14) 0.0391 (4)
C5 0.8305 (3) 0.12191 (16) 0.46720 (14) 0.0382 (4)
C6 0.6138 (3) 0.22135 (17) 0.27136 (14) 0.0416 (5)
H6 0.6089 (3) 0.27092 (17) 0.32425 (14) 0.0499 (6)*
C7 0.5531 (3) 0.25514 (17) 0.17428 (14) 0.0416 (5)
H7 0.5074 (3) 0.32751 (17) 0.16191 (14) 0.0499 (6)*
C8 0.8390 (3) −0.01396 (17) 0.75665 (14) 0.0407 (5)
C9 0.9259 (3) 0.22691 (19) 0.44950 (16) 0.0489 (5)
H9a 0.9215 (18) 0.2372 (8) 0.37874 (17) 0.0733 (8)*
H9b 0.8738 (13) 0.2909 (3) 0.4764 (11) 0.0733 (8)*
H9c 1.0438 (6) 0.2203 (6) 0.4820 (10) 0.0733 (8)*
C10 0.5598 (3) 0.18172 (17) 0.09476 (13) 0.0389 (4)
C11 0.9398 (3) 0.12553 (18) 0.65006 (15) 0.0454 (5)
C12 0.8492 (3) −0.0416 (2) 0.86465 (15) 0.0554 (6)
H12a 0.9678 (4) −0.0434 (15) 0.8967 (3) 0.0831 (9)*
H12b 0.789 (2) 0.0151 (9) 0.8959 (3) 0.0831 (9)*
H12c 0.797 (2) −0.1144 (7) 0.87109 (15) 0.0831 (9)*
C13 0.6877 (3) 0.03998 (17) 0.21150 (15) 0.0419 (5)
H13 0.7319 (3) −0.03271 (17) 0.22414 (15) 0.0502 (6)*
C14 0.8397 (2) 0.07122 (16) 0.56378 (13) 0.0368 (4)
N1 0.7321 (2) 0.07168 (14) 0.39048 (12) 0.0434 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0748 (11) 0.0408 (8) 0.0347 (7) −0.0120 (7) −0.0066 (7) 0.0022 (6)
O2 0.0822 (11) 0.0507 (9) 0.0265 (7) 0.0122 (8) −0.0009 (7) 0.0018 (6)
O3 0.1131 (16) 0.0775 (13) 0.0444 (9) −0.0536 (12) −0.0125 (9) 0.0064 (9)
O4 0.0563 (9) 0.0434 (8) 0.0295 (7) −0.0021 (6) −0.0029 (6) −0.0003 (6)
C1 0.0454 (11) 0.0404 (10) 0.0286 (9) −0.0016 (8) −0.0009 (7) 0.0027 (8)
C2 0.0565 (13) 0.0373 (10) 0.0383 (10) −0.0024 (9) 0.0051 (9) 0.0042 (8)
C3 0.0508 (12) 0.0445 (11) 0.0329 (10) 0.0055 (9) 0.0021 (8) −0.0065 (8)
C4 0.0466 (11) 0.0347 (10) 0.0332 (9) 0.0032 (8) −0.0009 (8) −0.0006 (8)
C5 0.0431 (10) 0.0367 (10) 0.0329 (9) 0.0046 (8) 0.0012 (8) 0.0004 (8)
C6 0.0557 (12) 0.0394 (10) 0.0290 (9) 0.0000 (9) 0.0052 (8) −0.0029 (8)
C7 0.0532 (12) 0.0359 (10) 0.0343 (10) 0.0040 (9) 0.0036 (8) 0.0028 (8)
C8 0.0475 (11) 0.0389 (10) 0.0346 (10) 0.0077 (8) 0.0046 (8) 0.0027 (8)
C9 0.0536 (13) 0.0506 (12) 0.0397 (11) −0.0060 (10) 0.0007 (9) 0.0079 (9)
C10 0.0451 (11) 0.0425 (11) 0.0275 (9) 0.0004 (8) 0.0018 (7) 0.0032 (8)
C11 0.0555 (13) 0.0423 (11) 0.0348 (10) −0.0052 (10) −0.0028 (9) 0.0032 (8)
C12 0.0773 (16) 0.0557 (14) 0.0329 (11) 0.0044 (12) 0.0088 (10) 0.0034 (9)
C13 0.0462 (11) 0.0379 (10) 0.0385 (10) 0.0066 (8) −0.0008 (8) 0.0005 (8)
C14 0.0439 (11) 0.0336 (9) 0.0306 (9) 0.0029 (8) −0.0002 (8) 0.0021 (7)
N1 0.0560 (10) 0.0414 (9) 0.0290 (8) −0.0014 (8) −0.0033 (7) 0.0036 (7)

Geometric parameters (Å, º)

O1—H1 0.82 C5—C9 1.489 (3)
O1—C4 1.265 (2) C5—C14 1.428 (3)
O2—H2 0.82 C5—N1 1.324 (2)
O2—C10 1.356 (2) C6—H6 0.93
O3—C11 1.201 (3) C6—C7 1.377 (3)
O4—C8 1.356 (2) C7—H7 0.93
O4—C11 1.394 (2) C7—C10 1.389 (3)
C1—C6 1.385 (3) C8—C12 1.486 (3)
C1—C13 1.384 (3) C9—H9a 0.96
C1—N1 1.432 (2) C9—H9b 0.96
C2—H2a 0.93 C9—H9c 0.96
C2—C4 1.433 (3) C11—C14 1.442 (3)
C2—C8 1.326 (3) C12—H12a 0.96
C3—H3 0.93 C12—H12b 0.96
C3—C10 1.388 (3) C12—H12c 0.96
C3—C13 1.380 (3) C13—H13 0.93
C4—C14 1.438 (3)
C4—O1—H1 109.5 C12—C8—C2 127.3 (2)
C10—O2—H2 109.5 H9a—C9—C5 109.5
C11—O4—C8 122.46 (15) H9b—C9—C5 109.5
C13—C1—C6 119.66 (17) H9b—C9—H9a 109.5
N1—C1—C6 121.88 (17) H9c—C9—C5 109.5
N1—C1—C13 118.18 (18) H9c—C9—H9a 109.5
C4—C2—H2a 119.25 (12) H9c—C9—H9b 109.5
C8—C2—H2a 119.25 (12) C3—C10—O2 117.93 (17)
C8—C2—C4 121.5 (2) C7—C10—O2 122.75 (18)
C10—C3—H3 119.90 (11) C7—C10—C3 119.31 (17)
C13—C3—H3 119.90 (12) O4—C11—O3 113.30 (18)
C13—C3—C10 120.19 (18) C14—C11—O3 129.00 (19)
C2—C4—O1 119.33 (18) C14—C11—O4 117.69 (18)
C14—C4—O1 122.99 (17) H12a—C12—C8 109.5
C14—C4—C2 117.68 (17) H12b—C12—C8 109.5
C14—C5—C9 123.23 (17) H12b—C12—H12a 109.5
N1—C5—C9 119.29 (17) H12c—C12—C8 109.5
N1—C5—C14 117.48 (18) H12c—C12—H12a 109.5
H6—C6—C1 119.91 (11) H12c—C12—H12b 109.5
C7—C6—C1 120.17 (18) C3—C13—C1 120.30 (18)
C7—C6—H6 119.91 (12) H13—C13—C1 119.85 (11)
H7—C7—C6 119.82 (12) H13—C13—C3 119.85 (12)
C10—C7—C6 120.36 (18) C5—C14—C4 121.89 (17)
C10—C7—H7 119.82 (11) C11—C14—C4 118.74 (17)
C2—C8—O4 121.50 (18) C11—C14—C5 119.35 (18)
C12—C8—O4 111.21 (18) C5—N1—C1 127.99 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 1.83 2.560 (2) 147
O2—H2···O1i 0.82 1.90 2.710 (2) 169
C12—H12B···O3ii 0.96 2.55 3.137 (3) 120

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+2, y−1/2, −z+3/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7460).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Bai, Z.-C. & Jing, Z.-L. (2007). Acta Cryst. E63, o3822.
  3. Djedouani, A., Bendaas, A., Boufas, S., Allain, M., Bouet, G. & Khan, M. (2007). Acta Cryst. E63, o1271–o1273.
  4. Djedouani, A., Boufas, S., Allain, M., Bouet, G. & Khan, M. (2008). Acta Cryst. E64, o1785. [DOI] [PMC free article] [PubMed]
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Garnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.
  9. Girija, C. R. & Begum, N. S. (2004). Acta Cryst. E60, o535–o536.
  10. Girija, C. R., Begum, N. S., Sridhar, M. A., Lokanath, N. K. & Prasad, J. S. (2004). Acta Cryst. E60, o586–o588.
  11. Hadjoudis, E., Rontoyianni, A., Ambroziak, K., Dziembowska, T. & Mavridis, I. M. (2004). J. Photochem. Photobiol. Chem. 162, 521–530.
  12. Lussier, L. S., Sandorfy, C., Le Thanh Hoa & Vocelle, D. (1987). J. Phys. Chem. 91, 2282–2287.
  13. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  14. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  15. Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.
  16. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  17. Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  18. Zhao, L., Hou, Q., Sui, D., Wang, Y. & Jiang, S. (2007). Spectrochim. Acta A Mol. Biomol. Spectrosc. 67, 1120–1125. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015012840/hb7460sup1.cif

e-71-0o564-sup1.cif (14.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015012840/hb7460Isup2.hkl

e-71-0o564-Isup2.hkl (124.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015012840/hb7460Isup3.cml

. DOI: 10.1107/S2056989015012840/hb7460fig1.tif

The structure of the title compound in 50% probability ellipsoids.

S . DOI: 10.1107/S2056989015012840/hb7460fig2.tif

Part of the crystal structure of (I), showing the formation of S(6) rings with dashed red lines. N—H⋯O and O—H⋯O hydrogen bonds are shown as blue dashed lines.

CCDC reference: 1410367

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES