Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jul 29;71(Pt 8):o606–o607. doi: 10.1107/S2056989015013699

Crystal structure of (7-methyl-2-oxo-2H-chromen-4-yl)methyl piperidine-1-carbo­di­thio­ate

K R Roopashree a, T G Meenakshi b, K Mahesh Kumar c, O Kotresh c, H C Devarajegowda a,*
PMCID: PMC4571421  PMID: 26396821

Abstract

In the title compound, C17H19NO2S2, the 2H-chromene ring system is nearly planar, with a maximum deviation of 0.0383 (28) Å, and the piperidine ring adopts a chair conformation. The 2H-chromene ring makes dihedral angles of 32.89 (16) and 67.33 (8)°, respectively, with the mean planes of the piperidine ring and the carbodi­thio­ate group. In the crystal, C—H⋯O and weak C—H⋯S hydrogen bonds link the mol­ecules into chains along [001]. The crystal structure also features C—H⋯π and π–π inter­actions, with a centroid–centroid distance of 3.7097 (17) Å.

Keywords: crystal structure, 2H-chromene, hydrogen bonding, C—H⋯π inter­actions, π–π inter­actions

Related literature  

For biological applications of coumarins, see: Stiefel et al. (1995); Murray et al. (1982); Khan et al. (2004); Kawaii et al. (2001); Yu et al. (2003). For biological applications of di­thia­carbamates, see: D’hooghe & de Kime (2006); Thorn & Ludwig (1962); Cao et al. (2005). For a related structure, see: Kumar et al. (2013).graphic file with name e-71-0o606-scheme1.jpg

Experimental  

Crystal data  

  • C17H19NO2S2

  • M r = 333.45

  • Monoclinic, Inline graphic

  • a = 4.9641 (2) Å

  • b = 11.4351 (3) Å

  • c = 14.0023 (4) Å

  • β = 90.743 (2)°

  • V = 794.77 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 296 K

  • 0.24 × 0.20 × 0.12 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: ψ scan (SADABS; Sheldrick, 2007) T min = 0.770, T max = 1.000

  • 4426 measured reflections

  • 2119 independent reflections

  • 2027 reflections with I > 2σ(I)

  • R int = 0.017

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.062

  • S = 1.04

  • 2119 reflections

  • 200 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: Flack x determined using 704 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)

  • Absolute structure parameter: 0.05 (3)

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015013699/zl2626sup1.cif

e-71-0o606-sup1.cif (157.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015013699/zl2626Isup2.hkl

e-71-0o606-Isup2.hkl (170KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015013699/zl2626Isup3.cml

. DOI: 10.1107/S2056989015013699/zl2626fig1.tif

The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

. DOI: 10.1107/S2056989015013699/zl2626fig2.tif

Crystal packing for the title compound with hydrogen bonds drawn as dashed lines.

CCDC reference: 1413856

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C13H13O4i 0.93 2.45 3.223(4) 140
C16H16BS2 0.97 2.70 3.152(4) 109
C18H18BS1 0.97 2.38 2.930(4) 116
C22H22AS2 0.97 2.55 3.065(4) 113

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad for access to their CCD X-ray facilities, the X-ray data collection, and GCMS, IR, CHNS analysis and NMR data.

supplementary crystallographic information

S1. Comment

Coumarins and their derivatives play an important role in the agricultural and pharmaceutical industries (Stiefel et al., 1995). They are widely present in higher plants such as Rutaceae, Apiaceae, Asteraceae, Leguminosae, Thymelaeaceae, and they also occur as animal and microbial metabolites (Murray et al., 1982). Most of them show a wide spectrum of pharmacological effects, including antimicrobial (Khan et al., 2004), anti-arrhythmic, antiosteoporosis, anti-HIV, and antitumor activities (Kawaii et al., 2001; Yu et al., 2003). Accordingly, many reports have described various structures and biological evaluations of numerous coumarin analogs newly synthesized or isolated from plants.

Sulfur containing molecules are currently under study as chemoprotectants in chemotherapy. Organic substances with a dithio functional group have been widely used in industry as rodent repellents, vulcanization additives in rubber manufacturing, additives in lubricants, and in agriculture as fungicides on almond trees, stone fruits, and vegetables. Among the various sulfur ligands being examined currently, dithiocarbamates have a special significance owing to their many uses, e.g. in analytical determinations, as arrestors of human immunodeficiency virus infections such as AIDS, in pharmaceutical products, in agriculture as pesticides and fungicides, and as high-pressure lubricants (D'hooghe & de Kime, 2006; Thorn & Ludwig, 1962; Cao et al., 2005). One molecule of (7-methyl-2-oxo-2H-chromen-4-yl)methylpiperidine-1-carbodithioate is shown in Fig. 1. The 2Hchromene ring system (O3/C6–C13/C15) is essentially planar, with a maximum deviation of 0.0383 (28) Å for atom C10 and the piperidine (N5/C18–C22) ring adopts a chair conformation. The dihedral angle of the 2H-chromene (O3/C6–C13/C15) ring with the piperidine (N5/C18–C22) ring and carbodithioate group are 32.89 (16)° and 67.33 (8)°, respectively. In addition, intermolecular C—H···O and weak C—H···S hydrogen bonds (Table 1) link the components into chains along [001]. The crystal structure also features C—H···π [Cg(3) (C9–C15)] and [Cg(1) (O3/C6–C10)]π–π [Cg(3) (C9–C15)] interactions, with centroid–centroid distances of 3.7081 (15) Å that further stabilize the crystal packing, Figure 2.

S2. Experimental

The title compound compound was prepared according to a reported method (Kumar et al., 2013). Colourless needles of the title compound were grown from a mixed solution of EtOH/CHCl3 (v/v = 1/1) by slow evaporation at room temperature. Yield: 80%, m.p. 420 K.

S3. Refinement

All H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H, C—H = 0.97 Å for methylene H and C—H = 0.96 Å for methyl H,and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Crystal packing for the title compound with hydrogen bonds drawn as dashed lines.

Crystal data

C17H19NO2S2 Dx = 1.393 Mg m3
Mr = 333.45 Melting point: 420 K
Monoclinic, Pc Mo Kα radiation, λ = 0.71073 Å
a = 4.9641 (2) Å Cell parameters from 2119 reflections
b = 11.4351 (3) Å θ = 1.8–25.0°
c = 14.0023 (4) Å µ = 0.34 mm1
β = 90.743 (2)° T = 296 K
V = 794.77 (4) Å3 Plate, colourless
Z = 2 0.24 × 0.20 × 0.12 mm
F(000) = 352

Data collection

Bruker SMART CCD area-detector diffractometer 2119 independent reflections
Radiation source: fine-focus sealed tube 2027 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.017
Detector resolution: 10.0 pixels mm-1 θmax = 25.0°, θmin = 1.8°
ω and φ scans h = −5→5
Absorption correction: ψ scan (SADABS; Sheldrick, 2007) k = −13→13
Tmin = 0.770, Tmax = 1.000 l = −13→16
4426 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0331P)2 + 0.0991P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.062 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.14 e Å3
2119 reflections Δρmin = −0.13 e Å3
200 parameters Absolute structure: Flack x determined using 704 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraints Absolute structure parameter: 0.05 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.15995 (16) 0.77643 (6) 0.48353 (6) 0.0417 (2)
S2 0.42720 (17) 0.60022 (8) 0.35570 (7) 0.0529 (3)
O3 0.1614 (4) 0.99061 (19) 0.14352 (14) 0.0405 (5)
O4 0.4912 (5) 0.8912 (2) 0.07897 (17) 0.0579 (7)
N5 0.0507 (6) 0.5536 (2) 0.4834 (2) 0.0496 (7)
C6 0.3753 (7) 0.9153 (3) 0.1512 (2) 0.0414 (8)
C7 0.4412 (7) 0.8712 (3) 0.2455 (2) 0.0379 (8)
H7 0.5761 0.8152 0.2518 0.045*
C8 0.3150 (6) 0.9079 (2) 0.3245 (2) 0.0324 (7)
C9 0.1022 (6) 0.9951 (2) 0.3146 (2) 0.0320 (7)
C10 0.0312 (6) 1.0321 (2) 0.2230 (2) 0.0331 (7)
C11 −0.1659 (6) 1.1147 (3) 0.2057 (2) 0.0373 (7)
H11 −0.2102 1.1357 0.1433 0.045*
C12 −0.2979 (6) 1.1663 (2) 0.2814 (2) 0.0370 (7)
C13 −0.2277 (6) 1.1305 (3) 0.3735 (2) 0.0396 (8)
H13 −0.3149 1.1640 0.4252 0.047*
C14 −0.5104 (7) 1.2582 (3) 0.2648 (3) 0.0509 (9)
H14A −0.5426 1.2672 0.1975 0.076*
H14B −0.4501 1.3312 0.2913 0.076*
H14C −0.6742 1.2348 0.2952 0.076*
C15 −0.0339 (6) 1.0474 (2) 0.3902 (2) 0.0366 (7)
H15 0.0076 1.0254 0.4526 0.044*
C16 0.4049 (6) 0.8639 (3) 0.4206 (2) 0.0379 (7)
H16A 0.4527 0.9305 0.4601 0.045*
H16B 0.5665 0.8174 0.4125 0.045*
C17 0.2071 (6) 0.6311 (3) 0.4400 (2) 0.0378 (7)
C18 −0.1184 (8) 0.5752 (3) 0.5662 (3) 0.0561 (10)
H18A −0.3046 0.5577 0.5499 0.067*
H18B −0.1071 0.6570 0.5839 0.067*
C19 −0.0287 (10) 0.5001 (3) 0.6495 (3) 0.0669 (11)
H19A 0.1498 0.5243 0.6704 0.080*
H19B −0.1507 0.5116 0.7022 0.080*
C20 −0.0229 (10) 0.3718 (3) 0.6234 (3) 0.0746 (13)
H20A −0.2056 0.3438 0.6136 0.090*
H20B 0.0579 0.3275 0.6754 0.090*
C21 0.1378 (9) 0.3527 (3) 0.5330 (3) 0.0733 (14)
H21A 0.3265 0.3689 0.5461 0.088*
H21B 0.1224 0.2716 0.5136 0.088*
C22 0.0400 (8) 0.4302 (3) 0.4529 (3) 0.0630 (11)
H22A 0.1521 0.4192 0.3974 0.076*
H22B −0.1436 0.4095 0.4353 0.076*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0590 (5) 0.0291 (4) 0.0373 (4) 0.0030 (4) 0.0125 (4) 0.0021 (4)
S2 0.0684 (6) 0.0435 (5) 0.0469 (5) 0.0125 (4) 0.0112 (5) −0.0040 (4)
O3 0.0532 (14) 0.0428 (13) 0.0256 (12) 0.0032 (10) 0.0063 (10) 0.0005 (9)
O4 0.0800 (17) 0.0586 (16) 0.0356 (14) 0.0054 (14) 0.0226 (13) −0.0038 (11)
N5 0.0614 (18) 0.0287 (13) 0.0591 (19) 0.0034 (12) 0.0108 (16) −0.0015 (12)
C6 0.055 (2) 0.0355 (17) 0.034 (2) −0.0090 (16) 0.0097 (17) −0.0066 (14)
C7 0.0457 (19) 0.0311 (16) 0.0370 (19) −0.0016 (14) 0.0064 (16) 0.0018 (13)
C8 0.0378 (17) 0.0284 (15) 0.0311 (17) −0.0092 (13) 0.0014 (14) 0.0009 (12)
C9 0.0389 (17) 0.0287 (15) 0.0285 (18) −0.0074 (13) 0.0054 (14) 0.0013 (12)
C10 0.0429 (17) 0.0304 (15) 0.0262 (16) −0.0078 (13) 0.0048 (14) −0.0022 (12)
C11 0.0458 (19) 0.0343 (16) 0.0319 (18) −0.0061 (15) −0.0001 (15) 0.0054 (13)
C12 0.0410 (17) 0.0295 (16) 0.0407 (19) −0.0082 (13) 0.0063 (15) 0.0018 (14)
C13 0.0464 (19) 0.0342 (16) 0.038 (2) −0.0052 (15) 0.0136 (16) −0.0059 (13)
C14 0.049 (2) 0.0407 (19) 0.063 (2) 0.0030 (16) 0.0030 (19) 0.0030 (16)
C15 0.0479 (18) 0.0354 (16) 0.0266 (16) −0.0073 (15) 0.0026 (15) 0.0009 (13)
C16 0.0450 (19) 0.0350 (16) 0.0338 (18) −0.0026 (14) 0.0008 (15) −0.0004 (14)
C17 0.0439 (18) 0.0316 (16) 0.0377 (19) 0.0058 (14) −0.0067 (15) −0.0004 (13)
C18 0.061 (2) 0.040 (2) 0.068 (3) 0.0003 (17) 0.014 (2) 0.0126 (17)
C19 0.082 (3) 0.055 (2) 0.064 (3) −0.003 (2) −0.001 (2) 0.0077 (19)
C20 0.085 (3) 0.048 (2) 0.090 (4) −0.011 (2) −0.035 (3) 0.024 (2)
C21 0.073 (3) 0.038 (2) 0.109 (4) −0.001 (2) −0.026 (3) −0.002 (2)
C22 0.075 (3) 0.0324 (18) 0.081 (3) −0.0030 (18) 0.003 (2) −0.0062 (18)

Geometric parameters (Å, º)

S1—C17 1.786 (3) C13—H13 0.9300
S1—C16 1.812 (3) C14—H14A 0.9600
S2—C17 1.657 (3) C14—H14B 0.9600
O3—C6 1.370 (4) C14—H14C 0.9600
O3—C10 1.378 (3) C15—H15 0.9300
O4—C6 1.202 (4) C16—H16A 0.9700
N5—C17 1.330 (4) C16—H16B 0.9700
N5—C18 1.461 (4) C18—C19 1.511 (5)
N5—C22 1.475 (4) C18—H18A 0.9700
C6—C7 1.447 (4) C18—H18B 0.9700
C7—C8 1.346 (4) C19—C20 1.512 (6)
C7—H7 0.9300 C19—H19A 0.9700
C8—C9 1.458 (4) C19—H19B 0.9700
C8—C16 1.499 (4) C20—C21 1.521 (6)
C9—C10 1.392 (4) C20—H20A 0.9700
C9—C15 1.397 (4) C20—H20B 0.9700
C10—C11 1.379 (4) C21—C22 1.505 (6)
C11—C12 1.385 (4) C21—H21A 0.9700
C11—H11 0.9300 C21—H21B 0.9700
C12—C13 1.394 (5) C22—H22A 0.9700
C12—C14 1.505 (4) C22—H22B 0.9700
C13—C15 1.371 (5)
C17—S1—C16 104.81 (15) C8—C16—H16A 108.4
C6—O3—C10 121.6 (2) S1—C16—H16A 108.4
C17—N5—C18 126.5 (3) C8—C16—H16B 108.4
C17—N5—C22 121.6 (3) S1—C16—H16B 108.4
C18—N5—C22 111.9 (3) H16A—C16—H16B 107.5
O4—C6—O3 117.2 (3) N5—C17—S2 125.3 (2)
O4—C6—C7 125.6 (3) N5—C17—S1 112.6 (2)
O3—C6—C7 117.1 (3) S2—C17—S1 122.13 (19)
C8—C7—C6 122.6 (3) N5—C18—C19 110.5 (3)
C8—C7—H7 118.7 N5—C18—H18A 109.6
C6—C7—H7 118.7 C19—C18—H18A 109.6
C7—C8—C9 118.7 (3) N5—C18—H18B 109.6
C7—C8—C16 119.8 (3) C19—C18—H18B 109.6
C9—C8—C16 121.5 (3) H18A—C18—H18B 108.1
C10—C9—C15 116.7 (3) C20—C19—C18 111.8 (4)
C10—C9—C8 118.0 (3) C20—C19—H19A 109.3
C15—C9—C8 125.3 (3) C18—C19—H19A 109.3
C11—C10—O3 115.7 (3) C20—C19—H19B 109.3
C11—C10—C9 122.7 (3) C18—C19—H19B 109.3
O3—C10—C9 121.6 (3) H19A—C19—H19B 107.9
C10—C11—C12 120.0 (3) C19—C20—C21 110.6 (3)
C10—C11—H11 120.0 C19—C20—H20A 109.5
C12—C11—H11 120.0 C21—C20—H20A 109.5
C11—C12—C13 117.9 (3) C19—C20—H20B 109.5
C11—C12—C14 121.2 (3) C21—C20—H20B 109.5
C13—C12—C14 120.9 (3) H20A—C20—H20B 108.1
C15—C13—C12 121.9 (3) C22—C21—C20 111.6 (4)
C15—C13—H13 119.1 C22—C21—H21A 109.3
C12—C13—H13 119.1 C20—C21—H21A 109.3
C12—C14—H14A 109.5 C22—C21—H21B 109.3
C12—C14—H14B 109.5 C20—C21—H21B 109.3
H14A—C14—H14B 109.5 H21A—C21—H21B 108.0
C12—C14—H14C 109.5 N5—C22—C21 109.7 (3)
H14A—C14—H14C 109.5 N5—C22—H22A 109.7
H14B—C14—H14C 109.5 C21—C22—H22A 109.7
C13—C15—C9 120.9 (3) N5—C22—H22B 109.7
C13—C15—H15 119.6 C21—C22—H22B 109.7
C9—C15—H15 119.6 H22A—C22—H22B 108.2
C8—C16—S1 115.4 (2)
C10—O3—C6—O4 −173.9 (3) C14—C12—C13—C15 −179.7 (3)
C10—O3—C6—C7 6.4 (4) C12—C13—C15—C9 0.1 (5)
O4—C6—C7—C8 175.3 (3) C10—C9—C15—C13 0.2 (4)
O3—C6—C7—C8 −5.1 (4) C8—C9—C15—C13 178.6 (3)
C6—C7—C8—C9 0.4 (4) C7—C8—C16—S1 −115.5 (3)
C6—C7—C8—C16 −176.3 (3) C9—C8—C16—S1 67.9 (3)
C7—C8—C9—C10 3.0 (4) C17—S1—C16—C8 85.8 (3)
C16—C8—C9—C10 179.6 (3) C18—N5—C17—S2 171.3 (3)
C7—C8—C9—C15 −175.4 (3) C22—N5—C17—S2 −6.1 (5)
C16—C8—C9—C15 1.2 (4) C18—N5—C17—S1 −7.9 (4)
C6—O3—C10—C11 174.8 (3) C22—N5—C17—S1 174.7 (3)
C6—O3—C10—C9 −3.2 (4) C16—S1—C17—N5 176.6 (2)
C15—C9—C10—C11 −1.0 (4) C16—S1—C17—S2 −2.7 (2)
C8—C9—C10—C11 −179.6 (3) C17—N5—C18—C19 −118.1 (4)
C15—C9—C10—O3 176.8 (2) C22—N5—C18—C19 59.5 (4)
C8—C9—C10—O3 −1.7 (4) N5—C18—C19—C20 −55.0 (5)
O3—C10—C11—C12 −176.5 (2) C18—C19—C20—C21 51.6 (5)
C9—C10—C11—C12 1.5 (4) C19—C20—C21—C22 −52.7 (5)
C10—C11—C12—C13 −1.1 (4) C17—N5—C22—C21 117.6 (4)
C10—C11—C12—C14 178.9 (3) C18—N5—C22—C21 −60.2 (4)
C11—C12—C13—C15 0.3 (4) C20—C21—C22—N5 56.3 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C13—H13···O4i 0.93 2.45 3.223 (4) 140
C16—H16B···S2 0.97 2.70 3.152 (4) 109
C18—H18B···S1 0.97 2.38 2.930 (4) 116
C22—H22A···S2 0.97 2.55 3.065 (4) 113

Symmetry code: (i) x−1, −y+2, z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZL2626).

References

  1. Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cao, S. L., Feng, Y. P., Jiang, Y. Y., Liu, S. Y., Ding, G. Y. & Li, R. T. (2005). Bioorg. Med. Chem. Lett. 15, 1915–1917. [DOI] [PubMed]
  3. D’hooghe, M. & de Kime, N. (2006). Tetrahedron, 62, 513–535.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Kawaii, S., Tomono, Y., Ogawa, K., Sugiura, M., Yano, M. & Yoshizawa, Y. (2001). Anticancer Res. 21, 917–923. [PubMed]
  6. Khan, K. M., Saify, Z. S., Khan, M. Z., Zia-Ullah, M. Z., Choudhary, I. M., Atta-ur-Rahman, , Perveen, S., Chohan, Z. H. & Supuran, C. T. (2004). J. Enzyme Inhib. Med. Chem. 19, 373–379. [DOI] [PubMed]
  7. Kumar, K. M., Vinduvahini, M., Mahabhaleshwaraiah, N. M., Kotresh, O. & Devarajegowda, H. C. (2013). Acta Cryst. E69, o1683. [DOI] [PMC free article] [PubMed]
  8. Murray, R. D. H., Mendez, J. & Brown, S. A. (1982). The Natural Coumarins: Occurrence, Chemistry and Biochemistry, p. 21. New York: John Wiley & Sons Ltd.
  9. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Stiefel, E. I. & Matsumoto, K. (1995). In Transition Metal Sulfur Chemistry, ASC Symposium Series, Vol. 653. Washington, DC: American Chemical Society.
  14. Thorn, G. D. & Ludwig, R. A. (1962). In The Dithiocarbamates and Related Compounds. Amsterdam: Elsevier.
  15. Yu, D., Suzuki, M., Xie, L., Morris-Natschke, S. L. & Lee, K. H. (2003). Med. Res. Rev. 23, 322–345. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015013699/zl2626sup1.cif

e-71-0o606-sup1.cif (157.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015013699/zl2626Isup2.hkl

e-71-0o606-Isup2.hkl (170KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015013699/zl2626Isup3.cml

. DOI: 10.1107/S2056989015013699/zl2626fig1.tif

The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

. DOI: 10.1107/S2056989015013699/zl2626fig2.tif

Crystal packing for the title compound with hydrogen bonds drawn as dashed lines.

CCDC reference: 1413856

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES