Skip to main content
Springer logoLink to Springer
. 2014 Oct 15;18(4):784–795. doi: 10.1007/s10120-014-0435-2

Integrins αvβ3 and αvβ5 as prognostic, diagnostic, and therapeutic targets in gastric cancer

Christine Böger 1, Viktoria S Warneke 1, Hans-Michael Behrens 1, Holger Kalthoff 2, Simon L Goodman 3, Thomas Becker 4, Christoph Röcken 1,
PMCID: PMC4572058  PMID: 25315085

Abstract

Background

We investigated the expression of two αv integrins, αvβ3 and αvβ5, in gastric cancer (GC) by testing the following hypotheses: that these molecules are expressed in GC; that they are implicated in GC biology; that they help to distinguish between the two major histological subtypes of GC, according to Laurén; and that they are prognostically relevant.

Methods

Formalin-fixed and paraffin-embedded tissue samples from 482 GC samples were stained immunohistochemically using rabbit monoclonal antibodies directed against αvβ3 (EM22703) and αvβ5 (EM09902). Immunostaining of tumor, stroma, and endothelial cells was evaluated separately by the quantity and intensity, generating an immunoreactivity score. The immunoreactivity score of both antibodies was correlated with clinicopathology data and patient survival.

Results

Each integrin was expressed in at least one tumor component in all GCs. Both were expressed significantly more often in the intestinal phenotype according to Laurén. Moreover, patients who grouped as “positive” for expression of αvβ3 on endothelial cells, and patients with an intestinal type GC, grouped as “negative” for expression of αvβ5 on stroma cells, had significantly longer survival. The expression of αvβ5 on stroma cells was confirmed to be an independent prognostic factor of intestinal-type GC.

Conclusion

The expression of αvβ3 and αvβ5 in at least one tumor component in all GC samples is an interesting new result that should form a basis for further investigations; for example, regarding selective integrin antagonists and the value of αvβ3 and αvβ5 as putative prognostic biomarkers. Moreover, both markers might be helpful in the routine classification of GC subtypes.

Electronic supplementary material

The online version of this article (doi:10.1007/s10120-014-0435-2) contains supplementary material, which is available to authorized users.

Keywords: Integrins, αvβ3, αvβ5, Immunohistochemistry, Gastric cancer

Introduction

In recent decades we have witnessed major advances in the understanding of the epidemiology, pathology, and pathogenesis of gastric cancer (GC). Infection with Helicobacter pylori or Epstein–Barr virus and dietary and lifestyle factors contribute to the risk of developing GC. This progress has been accompanied by the introduction of chemotherapy for GC, which is evolving continuously and which has improved patients’ survival [13]. Evidence is accumulating that patient prognosis and treatment response depend not only on the tumor stage but also on tumor-specific alterations of both gene expression and various signaling pathways. The two major histological subtypes of GC according to Laurén, diffuse-type and intestinal-type GC, have distinct tumor dissemination patterns and show diverse pathogeneses and expression profiles, likely resulting from molecular differences in tumor epithelial and stroma cells [4, 5]. Although the distinction between diffuse and intestinal subtype in GC has prognostic significance, it is still widely neglected in patient-tailored treatment of GC [6, 7].

Integrins are a family of 24 heterodimeric, multifunctional glycoproteins. As cell adhesion molecules and cell surface receptors, they mediate cell-to-cell and cell to extracellular matrix interactions, and are involved in a great variety of physiological and pathological processes [8]. They are composed of an α subunit, and a β subunit that connect to the cytoskeleton and interact with multiple signaling pathways; the α–β combination determines integrin ligand binding specificity and intracellular signaling [9]. Integrins are important regulators of differentiation, tumor growth, survival, migration, and invasion. In malignant tumors, they are involved in several processes that characterize the tumor phenotype [10]. Several integrin heterodimers have already been shown to be involved in GC biology and to have a significant value as prognostic markers. An increased expression of integrin αvβ6 is linked significantly with reduced survival, lymph node metastasis, and the number of cancer-associated fibroblasts, and integrin α5β1 is described to be significantly associated with tumor differentiation, TNM stage, and recurrence [1115]. Recently, integrins, particularly αvβ3 and αvβ5, have been recognized as putative targets for the treatment of several cancers, which has spurred research on integrins in cancer biology [1619]. Thus, the characterization of integrin distribution in human tumors is of great interest. At present little is known about the expression of integrins αvβ3 and αvβ5 in GC, mainly owing to the lack of antibodies suitable for use on formalin-fixed and paraffin-embedded (FFPE) tissue [20]. Only two studies to date have focused on integrins αvβ3 and αvβ5 in GC. Those studies differ significantly from our study, as they investigated only 19 and 55 cases, respectively, and relied on frozen tissue sections. Also, owing to the small number of cases, they were unable to correlate the expression pattern of αvβ3 and αvβ5 in GC with clinicopathological patient characteristics [12, 21].

Recently, comprehensive molecular characterization including whole-genome sequencing was performed in GC and nontumor pairs for integrative genomic analysis of GC [22, 23]: 20 of 26 genes of the integrin subunits were deregulated in GC pathways, involving also cell adherens junctions, angiogenesis, and focal adhesion. Thus, deregulation of integrin expression may be a tumor-biological hallmark of GC or its specific subtypes. However, data on integrin expression on a protein level in GC are still sparse, and validation of genomic data is urgently needed. Here we investigated the expression of αvβ3 and αvβ5 in GC on the protein level, examining the following questions:

  1. Are integrins expressed in GC?

  2. Are integrins implicated in GC biology?

  3. Do integrins discriminate the GC subtypes?

  4. Is the expression of integrins prognostically relevant?

Materials and methods

Study population

From the archive of the Institute of Pathology, University Hospital Kiel, we identified 611 Caucasian patients who underwent either total or partial gastrectomy for adenocarcinoma of the stomach or esophagogastric junction between 1997 and 2009. The following patient characteristics were retrieved: type of surgery, age at diagnosis, gender, tumor size, tumor localization, tumor type, tumor grade, depth of invasion, number of lymph nodes resected, and number of lymph nodes with metastases. Each resected specimen underwent gross sectioning and histological examination by surgical pathologists. The date of patient death was obtained from the Epidemiological Cancer Registry of the state of Schleswig–Holstein, Germany. Follow-up data for those patients who were still alive were retrieved from hospital records and general practitioners. Ethical approval was obtained from the local ethical review board (D 453/10). All patient data were pseudonymized prior to inclusion in the study. Tissue was included if (1) an adenocarcinoma of the stomach or esophagogastric junction was confirmed histologically, (2) the date of death or survival data were available, and (3) the overall tumor mass was large enough to get three tissue microarray (TMA) punches. Exclusion criteria were defined as follows: (1) histological examination identified a tumor type other than adenocarcinoma; (2) patients had undergone perioperative chemotherapy or radiotherapy; and (3) the date of the patient’s death or survival data had not been recorded.

In total, 482 patients fulfilled all study inclusion criteria. The clinicopathological patient characteristics are summarized in Table 1. In accordance with Laurén, an intestinal type was found in 247 patients (51.2 %), a diffuse type was found in 152 patients (31.5 %), a mixed type was found in 30 patients (6.2 %), and an unclassifiable type was found in 53 patients (11.0 %).

Table 1.

Clinico-pathological patient characteristics

Patients (n) 482
Age (years)
 Mean (range) ± SD 67.9 (33–92) ± 11.1
 Median 68.0
Gender, n (%)
 Men 297 (61.6)
 Women 185 (38.4)
Lauren phenotype, n (%)
 Intestinal 247 (51.2)
 Diffuse 152 (31.5)
 Mixed 30 (6.2)
 Unclassified 53 (11.0)
Localization, n (%)
 Proximal 149 (30.9)
 Distal 333 (69.1)
pT-category, n (%)
 pT1a 13 (2.7)
 pT1b 49 (10.2)
 pT2 56 (11.6)
 pT3 190 (39.4)
 pT4a 134 (27.8)
 pT4b 40 (8.3)
pN-category, n (valid  %)
 pN0 138 (28.8)
 pN1 67 (14.0)
 pN2 85 (17.7)
 pN3 (a/b) 189 (39.5)
 Missing 3
UICC stage (7th ed.), n (valid  %)
 IA 49 (10.4)
 IB 32 (6.8)
 IIA 58 (12.3)
 IIB 47 (9.9)
 IIIA 55 (11.6)
 IIIB 83 (17.5)
 IIIC 66 (14.0)
 IV 83 (17.5)
 Missing 9
Stage (“Kiel proposal”), n (valid  %)
 I 49 (10.2)
 II 84 (17.5)
 IIIA 49 (10.2)
 IIIB 153 (31.9)
 IV 145 (30.2)
 Missing 2
Resection margin, n (%)
 pR0 403 (83.6)
 pR1/2 54 (11.2)
 pRx 25 (5.2)
Lymphatic invasion, n (valid  %)
 pL0 228 (48.8)
 pL1 239 (51.2)
 Missing 15
Venous invasion, n (valid  %)
 pV0 413 (88.8)
 pV1 52 (11.2)
 Missing 17
Resected lymph nodes, n (valid  %)
 ≤16 195 (41.6)
 >16 274 (58.4)
 Missing 13
Positive lymph nodes, n (valid  %)
 0 134 (28.6)
 1–2 67 (14.3)
 ≥3 267 (57.1)
 Missing 14
Tumor grade, n (valid  %)
 G1/G2 111 (23.7)
 G3/G4 357 (76.3)
 Missing 14
Follow-up data, n (%)
 Dead 335 (69.5)
 Alive 131 (27.2)
 Unknown 16 (3.3)

Histology

Tissue specimens were fixed in formalin and embedded in paraffin. Deparaffinized sections were stained with hematoxylin and eosin. Histological reexamination of primary tissue sections was done for all cases to ensure if inclusion criteria were confirmed. Tumors were classified according to the Laurén classification [4] and were reexamined by two surgical pathologists. The pTNM stage of all study patients was determined according to the seventh edition of the Union for International Cancer Control (UICC) guidelines [24] and the recent proposal (Kiel stage) of Warneke et al. [25].

Tissue microarray construction

FFPE tissue samples were used to generate TMAs as described previously [26]. Briefly, three morphologically representative regions of the paraffin “donor” blocks (tumor) were chosen, and tissue cylinders of 1.5-mm diameter were punched from these areas. Afterwards, the tissue cylinders were inserted into a new “recipient” paraffin block using a custom-built instrument (Beecher Instruments, Silver Spring, MD, USA). The new recipient paraffin blocks were warmed in a 60 °C heating cabinet for 7 min to create a sufficient bond between the tumor tissue and the recipient block paraffin. Then, 2.5-μm-thick serial sections were obtained from the new recipient paraffin blocks, dried in a 60 °C heating cabinet for 6 h, and stored in polystyrene slide storage boxes at 8 °C until use.

Immunohistochemistry

For immunohistochemistry we used two monoclonal rabbit antibodies, directed against αvβ3 (EM22703) and αvβ5 (EM09902). The biochemical specificity of the antibodies against integrins, which were used in this study, was precisely defined previously [20]. All immunoreactions for validation used the Ventana BenchMark XT automated slide staining system using the reaction buffer ULTRA LCS, EZ Prep (75 °C; 4 min), protease 2 (12 min), UV inhibitor, ultraView Universal DAB, hematoxylin II, and bluing reagent (all reagents from Roche Diagnostics, Mannheim, Germany). Antibodies were diluted in antibody diluent (Zytomed Systems, Berlin, Germany) and were applied at 10 µg/ml for 36 min at 36 °C (anti-αvβ3), or 0.1 µg/ml for 40 min at 40 °C (anti-αvβ5). To determine the optimal antibody dilution, kidney sections were stained with serial dilutions of the primary antibodies (1 ng to 100 μg/ml). Distinctive staining patterns of αvβ3 (mainly glomerular) and αvβ5 (glomerular and descending tubuli) were used as reference positive controls for calibration and initial titration of the antibodies. Rabbit IgG preimmune sera (Abcam, Cambridge, UK) served as negative controls. Negative and positive controls were applied in parallel for each staining series. Additionally, we conducted immunohistochemistry with a monoclonal antibody directed against E-cadherin as previously described [6]. The E-cadherin staining results were correlated with those of αvβ3 and αvβ5.

Study design

TMA sections from each tumor were stained with antibodies directed against αvβ3 and αvβ5. The staining results were correlated with clinicopathology and survival data.

Evaluation of immunostaining

The quantity, intensity, and localization of immunoreactivity of both antibodies were evaluated by applying an immunoreactivity scoring system. Immunoreactivity was evaluated separately for tumor cells, stroma cells, and endothelial cells. Stroma cells included all cells of the tumor stroma (e.g. fibroblasts), and excluded endothelial cells, which were evaluated separately.

The previously described immunoreactivity scoring system [27] consisted of two components. Category A rated the percentage of immunoreactive cells and was graded as 0 (negative), 1 (up to 10 % positive cells), 2 (10–50 % positive cells), 3 (51–80 % positive cells), and 4 (81–100 % positive cells). Category B documented the intensity of immunostaining as 0 (no immunostaining), 1 (weak), 2 (moderate), or 3 (strong). The addition of category A and category B resulted in an immunoreactivity score (IRS), with was separately applied for tumor cells and stroma cells. The IRS ranged from 0 to 7 for tumor cells and from 0 to 7 for stroma cells. The intensity of the endothelial immunoreaction was rated as 0 (negative), 1 (weak), 2 (moderate), or 3 (strong).

Statistical analysis

Statistical analyses were done using SPSS 20.0 (IBM, New York, NY, USA). For comparison purposes, the IRS for tumor cells, the IRS for stroma cells, and the endothelial immunoreaction were partitioned at the median, and patients below the median were classified as “negative.” Median overall survival was determined using the Kaplan–Meier method, and the log-rank test was used to determine significance. To investigate the prognostic relevance, we included all variables having p < 0.100 in multivariate analysis using a Cox regression model and the backward logistic regression method (p in and p out = 0.05) to reduce the model to the independent variables. The significance of correlation between clinicopathological parameters and each antigen’s IRS was tested using Fisher’s exact test. For parameters of ordinal scale (T category, N category, tumor stage), we applied Kendall’s tau test instead. To account for the effects of multiple testing, we applied the explorative Simes (Benjamini–Hochberg) procedure [28]. We considered p ≤ 0.05 statistically significant. No adjustments were made.

Results

Staining results

Both αvβ3 and αvβ5 were expressed in at least one tumor component in all GC samples investigated (Fig. 1). Expression in tumor cells was mainly membranous. In cases with a strong membranous and/or stromal expression, an additional light cytoplasmic staining was observed.

Fig. 1.

Fig. 1

Expression of αvβ3 and αvβ5 in gastric carcinoma. This figure illustrates gastric carcinomas of the intestinal type according to Laurén with a strong membranous expression of αvβ3 on tumor cells (a) and on endothelial cells (b), a moderate membranous expression of αvβ5 on tumor cells (c), and a strong αvβ5 expression on stroma cells (d). Original magnification ×200

Integrin αvβ3

Integrin αvβ3 was expressed in 119 of 457 cases (26.0 %) in tumor cells. The percentage of stained tumor cells ranged from grade 0 to grade 4 (median grade 0), the staining intensity ranged from 0 (no immunostaining) to 3 (strong immunoreaction; median 0), and the tumor cell IRS ranged from 0 to 7 (median 0). Dichotomized by the median, 119 cases (26.0 %) were classified as positive and 338 cases (74.0 %) were classified as negative. In stroma cells, αvβ3 was expressed in 420 of 457 cases (91.9 %). The percentage of stained stroma cells ranged from grade 0 to grade 4 (median grade 1), the staining intensity ranged from 0 to 3 (median 1), and the stroma cell IRS ranged from 0 to 7 (median 3). Dichotomized by the median, 247 cases (54.0 %) were classified as positive and 210 cases (46.0 %) were classified as negative. Integrin αvβ3 was expressed in endothelial cells in all cases (456 of 456; 100 %). Staining intensity ranged from 1 to 3 (median 2). Dichotomized by the median, 363 cases (79.6 %) were classified as positive and 93 cases (20.4 %) were classified as negative.

Integrin αvβ5

Integrin αvβ5 was expressed in 299 of 453 cases (66.0 %) in tumor cells. The percentage of stained tumor cells ranged from grade 0 to grade 4 (median grade 2), the staining intensity ranged from 0 to 3 (median 1), and the tumor cell IRS ranged from 0 to 6 (median 3). Dichotomized by the median, 246 cases (54.3 %) were classified as positive and 207 cases (45.7 %) were classified as negative. In stroma cells, αvβ5 was expressed in all cases (454 of 454; 100 %). The percentage of stained stroma cells ranged from grade 1 to grade 4 (median grade 2), the staining intensity ranged from 1 to 4 (median 2), and the stroma cell IRS ranged from 2 to 7 (median 4). Dichotomized by the median, 189 cases (41.6 %) were classified as positive and 265 cases (58.4 %) were classified as negative. The expression of αvβ5 in endothelial cells could not be analyzed in 125 of 482 cases owing to a strong stromal immunoreaction. In the remaining 357 cases, αvβ5 was expressed in endothelial cells in 274 cases (76.8 %). Staining intensity ranged from 0 to 2 (median 1). Dichotomized by the median, 274 cases (76.8 %) were classified as positive and 83 cases (23.2 %) were classified as negative.

Clinicopathological correlation

Next we studied the correlation between the expression of the integrins and the clinicopathological patient characteristics. For this purpose, we split the IRS of each marker at the median into negative (at or below the median IRS) and positive (above the median IRS) cases. Significant correlations were found for gender, tumor type, tumor localization, T category, tumor stage according to the UICC and Kiel classifications, and tumor grade. Most interestingly, diffuse-type GC exhibited a significantly reduced expression of both integrins in tumor cells and in stroma cells compared with intestinal-type GC. There was no significant correlation between N category, venous invasion, or lymph vessel invasion and the expression of either tested marker. Co

mplete data are given in Table 2.

Table 2.

Correlation between αvβ3 and αvβ5 expression in tumor cells, stroma cells and endothelium and clinico-pathological patient characteristics

All patients αvβ3 αvβ5
Tumor cells Stroma cells Endothelium Tumor cells Stroma cells Endothelium
Negative [n (%)] Positive [n (%)] Negative [n (%)] Positive [n (%)] Negative [n (%)] Positive [n (%)] Negative [n (%)] Positive [n (%)] Negative [n (%)] Positive [n (%)] Negative [n (%)] Positive [n (%)]
Gender n p 457 0.514 457 0.387 456 0.634 453 0.175 454 <0.001 357 0.701
 Men 204 (72.9) 76 (27.1) 124 (44.3) 156 (55.7) 55 (19.6) 225 (80.4) 120 (43.0) 159 (57.0) 142 (50.7) 138 (49.3) 52 (24.2) 163 (75.8)
 Women 134 (75.7) 43 (24.3) 86 (48.6) 91 (51.4) 38 (21.6) 138 (78.4) 87 (50.0) 87 (50.0) 123 (70.7) 51 (29.3) 31 (21.8) 111 (78.2)
Lauren phenotype n p 457 0.005 457 0.004 456 0.003 453 <0.001 454 <0.001 357 0.662
 Intestinal 155 (66.5) 78 (33.5) 88 (37.8) 145 (62.2) 33 (14.2) 199 (85.8) 83 (35.5) 151 (64.5) 99 (42.3) 135 (57.7) 42 (24.6) 129 (75.4)
 Diffuse 118 (81.9) 26 (18.1) 80 (55.6) 64 (44.4) 42 (29.2) 102 (70.8) 85 (60.7) 55 (39.3) 118 (83.7) 23 (16.3) 29 (22.1) 102 (77.9)
 Mixed 24 (85.7) 4 (14.3) 13 (46.4) 15 (53.6) 8 (28.6) 20 (71.4) 14 (50.0) 14 (50.0) 20 (71.4) 8 (28.6) 3 (13.6) 19 (86.4)
 Unclassified 41 (78.8) 11 (21.2) 29 (55.8) 23 (44.2) 10 (19.2) 42 (80.8) 25 (49.0) 26 (51.0) 28 (54.9) 23 (45.1) 9 (27.3) 24 (72.7)
Localization n p 457 0.732 457 0.213 456 0.319 453 0.011 454 <0.001 357 0.273
 Proximal stomach 105 (72.9) 39 (27.1) 60 (41.7) 84 (58.3) 25 (17.5) 118 (82.5) 52 (36.6) 90 (63.4) 66 (46.5) 76 (53.5) 20 (19.2) 84 (80.8)
 Distal stomach 233 (74.4) 80 (25.6) 150 (47.9) 163 (52.1) 68 (21.7) 245 (78.3) 155 (49.8) 156 (50.2) 199 (63.8) 113 (36.2) 63 (24.9) 190 (75.1)
pT-category n p 457 0.949 457 0.052 456 0.005 453 0.362 454 <0.001 357 0.495
 pT1a 9 (75.0) 3 (25.0) 4 (33.3) 8 (66.7) 1 (8.3) 11 (91.7) 4 (50.0) 4 (50.0) 9 (100.0) 0 (0.0) 3 (37.5) 5 (62.5)
 pT1b 28 (70.0) 12 (30.0) 10 (25.0) 30 (75.0) 2 (5.0) 38 (95.0) 15 (35.7) 27 (64.3) 27 (64.3) 15 (35.7) 11 (32.4) 23 (67.6)
 pT2 42 (76.4) 13 (23.6) 24 (43.6) 31 (56.4) 10 (18.2) 45 (81.8) 23 (44.2) 29 (55.8) 26 (50.0) 26 (50.0) 7 (18.4) 31 (81.6)
 pT3 133 (72.3) 51 (27.7) 85 (46.2) 99 (53.8) 34 (18.6) 149 (81.4) 81 (44.0) 103 (56.0) 101 (54.9) 83 (45.1) 35 (25.0) 105 (75.0)
 pT4a 97 (76.4) 30 (23.6) 66 (52.0) 61 (48.0) 31 (24.4) 96 (75.6) 61 (47.3) 68 (52.7) 71 (55.0) 58 (45.0) 21 (20.4) 82 (79.6)
 pT4b 26 (74.4) 10 (25.6) 21 (53.8) 18 (46.2) 15 (38.5) 24 (61.5) 23 (60.5) 15 (39.5) 31 (81.6) 7 (18.4) 6 (17.6) 28 (82.4)
pN-category n p 455 0.919 455 0.439 454 0.110 450 0.409 451 0.710 354 0.500
 pN0 96 (75.0) 32 (25.0) 52 (40.6) 76 (59.4) 17 (13.4) 110 (86.6) 53 (42.4) 72 (57.6) 76 (60.8) 49 (39.2) 22 (22.2) 77 (77.8)
 pN1 51 (77.3) 15 (22.7) 34 (51.5) 32 (48.5) 14 (21.2) 52 (78.8) 33 (50.8) 32 (49.2) 41 (62.1) 25 (37.9) 14 (28.0) 36 (72.0)
 pN2 57 (74.0) 20 (26.0) 35 (45.5) 42 (54.5) 19 (24.7) 58 (75.3) 40 (52.6) 36 (47.4) 42 (55.3) 34 (44.7) 10 (16.9) 49 (83.1)
 pN3 (a/b) 134 (72.8) 50 (27.2) 89 (48.4) 95 (51.6) 43 (23.4) 141 (76.6) 81 (44.0) 103 (56.0) 103 (56.0) 81 (44.0) 37 (25.3) 109 (74.7)
Stage (UICC) n p 449 0.773 449 0.011 448 0.037 444 0.899 445 0.751 350 0.182
 IA 27 (65.9) 14 (34.1) 10 (24.4) 31 (75.6) 3 (7.3) 38 (92.7) 18 (43.9) 23 (56.1) 29 (70.7) 12 (29.3) 12 (34.3) 23 (65.7)
 IB 26 (83.9) 5 (16.1) 10 (32.3) 21 (67.7) 2 (6.5) 29 (93.5) 11 (39.3) 17 (60.7) 17 (58.6) 12 (41.4) 4 (18.2) 18 (81.8)
 IIA 43 (78.2) 12 (21.8) 27 (49.1) 28 (50.9) 9 (16.7) 45 (83.3) 23 (42.6) 31 (57.4) 29 (53.7) 25 (46.3) 5 (12.8) 34 (87.2)
 IIB 33 (70.2) 14 (29.8) 25 (53.2) 22 (46.8) 9 (19.1) 38 (80.9) 24 (52.2) 22 (47.8) 26 (56.5) 20 (43.5) 10 (29.4) 24 (70.6)
 IIIA 39 (76.5) 12 (23.5) 28 (54.9) 23 (45.1) 12 (23.5) 39 (76.5) 25 (49.0) 26 (51.9) 28 (54.9) 23 (45.1) 9 (23.1) 30 (76.9)
 IIIB 59 (72.8) 22 (27.2) 32 (39.5) 49 (60.5) 18 (22.2) 63 (77.8) 36 (43.9) 46 (56.1) 45 (54.9) 37 (45.1) 18 (27.3) 48 (72.7)
 IIIC 48 (72.7) 18 (27.3) 38 (57.6) 28 (42.4) 17 (25.8) 49 (74.2) 34 (51.5) 32 (48.5) 41 (62.1) 25 (37.9) 16 (29.6) 38 (70.4)
 IV 57 (74.0) 20 (26.0) 35 (45.5) 42 (54.5) 23 (29.9) 54 (70.1) 33 (43.4) 43 (56.6) 43 (56.6) 33 (43.4) 9 (14.8) 52 (85.2)
“Kiel”-stage n p 456 0.689 456 0.050 455 0.013 451 0.879 452 0.512 355 0.210
 I 27 (65.9) 14 (34.1) 10 (24.4) 31 (75.6) 3 (7.3) 38 (92.7) 18 (43.9) 23 (56.1) 29 (70.7) 12 (29.3) 12 (34.3) 23 (65.7)
 II 64 (78.0) 18 (22.0) 38 (46.3) 44 (53.7) 10 (12.3) 71 (87.7) 33 (41.2) 47 (58.8) 44 (55.0) 36 (45.0) 9 (15.0) 51 (85.0)
 IIIA 37 (75.5) 12 (24.5) 25 (51.0) 24 (49.0) 9 (18.4) 40 (81.6) 24 (50.0) 24 (50.0) 29 (59.2) 20 (40.8) 9 (25.0) 27 (75.0)
 IIIB 106 (73.1) 39 (26.9) 67 (46.2) 78 (53.8) 33 (22.8) 112 (77.2) 67 (46.5) 77 (53.5) 81 (56.2) 63 (43.8) 30 (26.8) 82 (73.2)
 IV 104 (74.8) 35 (25.2) 70 (50.4) 69 (49.6) 38 (27.3) 101 (72.7) 65 (47.1) 73 (52.9) 80 (58.0) 58 (42.0) 23 (20.5) 89 (79.5)
Lymphatic invasion n p 444 0.453 444 0.392 443 0.347 439 0.701 440 0.847 346 0.703
 pL0 160 (75.1) 53 (24.9) 100 (46.9) 113 (53.1) 39 (18.4) 173 (81.6) 98 (46.4) 113 (53.6) 124 (58.5) 88 (41.5) 37 (22.2) 130 (77.8)
 pL1 166 (71.9) 65 (28.1) 99 (42.9) 132 (57.1) 51 (22.1) 180 (77.9) 101 (44.3) 127 (55.7) 131 (57.5) 97 (42.5) 43 (24.0) 136 (76.0)
Venous invasion n p 442 0.733 442 0.227 441 1.000 437 0.051 438 0.648 345 1.000
 pV0 290 (73.8) 103 (26.2) 181 (46.1) 212 (53.9) 80 (20.4) 312 (79.6) 181 (46.8) 206 (53.2) 224 (57.7) 164 (42.3) 71 (23.0) 238 (77.0)
 pV1 35 (71.4) 14 (28.6) 18 (36.7) 31 (63.3) 10 (20.4) 39 (79.6) 16 (32.0) 34 (68.0) 31 (62.0) 19 (38.0) 8 (22.2) 28 (77.8)
Tumor grade n p 445 0.041 445 0.091 445 <0.001 441 0.114 442 0.002 347 0.536
 G1/G2 67 (65.7) 35 (34.3) 39 (38.2) 63 (61.8) 7 (6.9) 95 (93.1) 40 (38.8) 63 (61.2) 46 (44.7) 57 (55.3) 19 (26.4) 53 (73.6)
 G3/G4 261 (76.1) 82 (23.9) 164 (47.8) 179 (52.2) 80 (23.3) 263 (76.7) 163 (48.2) 175 (51.8) 211 (62.2) 128 (37.8) 63 (22.9) 212 (77.1)
Survival n p 441 0.727 441 0.177 440 0.024 437 0.846 438 0.125 344 0.95
 Median ± SD 14.6 ± 1.1 17.5 ± 3.9 16.9 ± 2.0 13.9 ± 1.3 12.1 ± 2.5 15.9 ± 1.2 16.5 ± 1.9 13.6 ± 1.4 17.1 ± 2.0 13.4 ± 1.6 17.1 ± 3.1 14.7 ± 1.2
 [95 %CI] [12.4–16.6] [9.7–25.3] [12.8–20.8] [11.5–16.5] [7.2–17.0] [13.5–18.3] [12.9–20.2] [10.9–16.3] [13.0–21.1] [10.3–16.5] [11.1–23.0] [12.3–17.1]

p values printet in bold denote statistically significant correlations

n numbers of patients. p p value, SD standard deviation

Subgroup analyses of intestinal-type and diffuse-type GC showed that the endothelial expression of αvβ3 in intestinal-type GC correlated significantly with the tumor grading: αvβ3 was more often expressed in G1/G2 tumors than in G3/G4 tumors. Moreover, the stromal expression of αvβ5 in intestinal-type GC correlated significantly with gender, the T category, and the tumor stage according to the Kiel classification. By contrast, there was no significant correlation between the expression of either marker and the clinicopathological patient characteristics in diffuse-type GC. Complete data are shown in Online Resource 1 and Online Resource 2.

The expression of E-cadherin in tumor cells correlated significantly with the expression of αvβ3 in tumor cells (p < 0.001) and stroma cells (p = 0.006) as well as with the expression of αvβ5 in tumor cells (p = 0.017). There was no significant correlation between the expression of E-cadherin and the expression of αvβ3 in endothelial cells (p = 0.141) or the expression of αvβ5 in stroma cells (p = 1.000) or endothelial cells (p = 0.885). Complete data on E-cadherin evaluation and the staining results are given in Online Resource 3.

Prognostic significance

Patient prognosis of the entire cohort significantly depended on patient age, Laurén phenotype, T category, N category, lymphatic invasion, venous invasion, tumor grade, and UICC stage and Kiel stage (data not shown). Patients who were grouped as “positive” for expression of αvβ3 on endothelial cells had significantly longer survival compared with patients with a “negative” αvβ3 expression in endothelial cells (Table 2, Fig. 2).

Fig. 2.

Fig. 2

Kaplan–Meier curves for intestinal-type versus diffuse-type gastric carcinoma according to Laurén (a), αvβ3 expression on endothelial cells in the entire cohort (b), αvβ3 expression on endothelial cells in intestinal-type gastric carcinoma (c), and αvβ5 expression on stroma cells in intestinal-type gastric carcinoma (d)

The subgroup analyses of intestinal-type and diffuse-type GC showed that this also applied to patients with an intestinal-type GC: these patients had significantly longer survival if they were “positive” for expression of αvβ3 on endothelial cells, compared with patients with a “negative” αvβ3 expression. Patients with an intestinal-type GC grouped as “positive” for expression of αvβ5 on stroma cells had significantly shorter survival than patients grouped as “negative” (Online Resource 1).

There were no other significant correlations between survival data and the expression of both markers.

Explorative multivariate analysis

Explorative multivariate survival analysis was done with all parameters which had p < 0.100 in univariate survival analysis. For the entire study population and the diffuse-type subgroup, T category and N category were found to be highly significantly independent prognosticators of patient survival. The subgroup analysis of intestinal-type GC confirmed the independent prognostic significance of T category, N category, lymphatic invasion, and αvβ5 expression on stroma cells (Table 3).

Table 3.

Explorative multivariate survival analysis

Subgroup Input parameters Independent parameters kept in model p value HR (95 % CI)
All cases Laurén phenotype
T-category T-category <0.001 1.031 (1.016–1.046)
N-category N-category <0.001 1.041 (1.030–1.052)
Lymphatic invasion
Venous invasion
Tumor grade
αvβ3 expression on endothelial cells
Intestinal type T-category T-category 0.026 1.024 (1.003–1.045)
N-category N-category <0.001 1.029 (1.014–1.044)
Lymphatic invasion Lymphatic invasion 0.026 1.554 (1.054–2.289)
Tumor grade
αvβ3 expression on endothelial cells
αvβ5 expression on stroma cells αvβ5 expression on stroma cells 0.043 1.417 (1.010–1.989)
Diffuse type T-category T-category <0.001 1.067 (1.035–1.100)
N-category N-category 0.001 1.032 (1.014–1.051)
Lymphatic invasion
Venous invasion

A Cox regression was performed with all parameters as input which had p < 0.100 in univariate survival analysis.Tumor stage (Union for International Cancer Control stage and Kiel stage) was excluded from the model

HR hazard ratio

aThe 95% confidence interval is given in parentheses.

Discussion

GC is a heterogeneous disease, which still leads cancer deaths worldwide [29]. During recent years, evidence has accumulated indicating that patient prognosis and treatment response depend not only on tumor stage, but also on the expression and tumor-specific alteration of intracellular signaling pathways. Different treatment strategies are needed to specifically target the aberrant cancer signaling pathways in GC [30, 31].

Integrins αvβ3 and αvβ5 are at the focus of several oncologic investigations [3239]. Integrins drive diverse intracellular signaling cascades, and so are involved in a great variety of physiological and pathological processes. They influence tumor cell proliferation, tumor cell movement, and cell survival in vivo and in vitro, and their involvement in multiple signaling pathways is crucial for tumor progression. This all suggests that integrins may be targets for the treatment of cancer, and this has spurred integrin research in cancer biology [9, 40, 41]. Some concepts for pharmacological treatment based on the inhibition of integrins already exist [18, 19], but implementation of a therapeutic strategy demands a robust verification of integrin expression in different tumors.

Here, for the first time we have investigated the expression of αvβ3 and αvβ5 in a large cohort of GC patients. Our primary observations are that:

  1. Integrins αvβ3 and αvβ5 were expressed in at least one tumor component of all GC samples, which in general suggests that GC might be an interesting target for further studies on integrin-antagonistic cancer therapy.

  2. A positive αvβ3 status and a positive αvβ5 status was observed significantly more often in intestinal-type GC than in diffuse-type GC. Intestinal-type GC is known to have a better outcome than diffuse-type GC [6]. We observed that a positive αvβ3 status showed statistically significant correlations with several clinicopathological patient characteristics that are known to be associated with a better outcome, such as a minor pT category, a minor UICC/Kiel stage, and a better tumor grading (G1/G2). Indeed, a positive αvβ5 status accompanies at least some of these characteristics. If we look more closely at these p values (p ≤ 0.05), it becomes clear that the distribution of the different subgroups is not as divergent as the statistics indicate. The subgroup analyses of intestinal-type and diffuse-type GC showed that only the endothelial expression of αvβ3 correlated significantly with the tumor grading, and that only the stromal expression of αvβ5 correlated significantly with the gender, the T category, and the tumor stage according to the Kiel classification. This indicates that the observed correlation between a positive αvβ3 status and a positive αvβ5 status and clinicopathological parameters that are associated with a better outcome is mainly caused by the increased expression of αvβ3 and αvβ5 in intestinal-type GC compared with diffuse-type GC. On the basis of these observations, one may speculate that both markers may be suitable to aid histological classification of GC.

  3. Patients with an increased expression of αvβ3 in endothelial cells, and patients with an intestinal-type GC “negative” for αvβ5 had significantly longer survival. Moreover, αvβ5 expression on stroma cells of intestinal-type GC was confirmed to be an independent prognostic factor. This interesting result is notable, as it seems that at least αvβ5 has potential value as a prognostic biomarker for GC. Nevertheless, the significance and the clinicopathological relevance of these findings remain unclear and need to be addressed in further investigations.

Another interesting finding was the predominant expression of αvβ3 and αvβ5 in stromal and endothelial cells. There is evidence that intratumoral stroma is a predictor of survival in patients with GC [42]. Moreover, the proven correlation between the expression of both markers with E-cadherin confirms the well-known involvement of integrins in cell adhesion signaling [43, 44].

In other tumor entities, a high expression level of other αv integrins has been described to be associated with tumor progression and worse survival, which is partly contradictory to our results. Previous studies mainly compared the expression level in neoplastic versus nonneoplastic tissue. In endometrial cancer, cervical squamous cell carcinoma, and serous epithelial ovarian carcinoma, an upregulation of integrin αvβ6 was described in tumor tissue compared with normal cycling endometrium or nonneoplastic epithelia [4547]. In colorectal cancer, the overexpression of αv correlated significantly with poor prognosis [48]. In our study, we did not compare expression levels in nonneoplastic versus neoplastic tissue, but focused on the differential expression of αvβ3 and αvβ5 in the diverse cellular components of the neoplastic tissue compartment. Moreover, we used two other antibodies, with potentially different reactivity profiles in GC, than those that were used previously.

However, our study shows that the tumor-biological significance of integrins is not restricted to their expression by tumor cells. It extends into the intratumoral stroma and tumor vessels, and furthermore, may also depend by as yet unknown mechanisms on the histological phenotype. The differential expression of integrins in the tumor stroma of different GC tumor types somewhat supports the general observation that the tumor stroma is highly variable; for example, with or without pronounced desmoplasia. This is a particular hallmark of diffuse-type GC. We hypothesize that the diffuse type, with its poorly cohesive growth pattern, might be the result of decreased integrin expression of both tumor and stroma cells. Further studies of this topic may be productive.

One methodical issue in our study was that the pretreatment procedure for both antibodies was relatively intense. Both antibodies have previously been shown to deliver concordant staining results in frozen sections and FFPE tissue. Regarding FFPE tissue, even small deviations of the pretreatment temperature led to a decreased staining intensity and quality during manual staining of anti-αvβ3 and anti-αvβ5 [49]. Such hazards can be minimized by using fully automated staining systems, as done in the present study, and as designed for these antibodies [20]. Nevertheless, possible incomplete antigen retrieval or partial destruction of epitopes during the rather aggressive pretreatment has to be generally considered.

In conclusion, this study is the first extensive longitudinal investigation of the expression of integrins αvβ3 and αvβ5 in GC. Our data support recent whole genome sequencing data and suggest that GC is an interesting indication for further investigations of selective integrin antagonists, and that both αvβ3 and αvβ5 are selectively expressed in different GC classes, and might be valuable in classification of GC subtypes. Furthermore, it is clear that in GC at least αvβ5 has potential value as a prognostic biomarker, and that both αvβ3 and αvβ5 might even be considered as novel therapeutic targets. Further investigations are needed, which, also in consideration of the comparison of integrin expression in tumor and nontumor tissue, might lead to additional information regarding the potential value of integrins αvβ3 and αvβ5 as diagnostic and prognostic biomarkers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Acknowledgment

We thank Ann-Kristin Linning for her excellent technical assistance. CR is supported by grants of the German Research Council (Grant-No. Ro 1173/12).

Conflict of interest

Simon L. Goodman is employed by Merck KGaA. All other authors declare that they have no conflict of interest.

Author contributions

Christine Böger conceived and performed experiments and analyzed data, Christoph Röcken conceived experiments, and Hans-Michael Behrens analyzed data. All authors were involved in writing the paper and had final approval regarding the submitted manuscript.

References

  • 1.Alberts SR, Cervantes A, van de Velde CJH. Gastric cancer: epidemiology, pathology and treatment. Ann Oncol. 2003;14:31–36. doi: 10.1093/annonc/mdg726. [DOI] [PubMed] [Google Scholar]
  • 2.Cunningham D, Allum WH, Stenning SP, Thompson JN, van de Velde CJH, Nicolson M, et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med. 2006;355:11–20. doi: 10.1056/NEJMoa055531. [DOI] [PubMed] [Google Scholar]
  • 3.Paoletti X, Oba K, Burzykowski T, Michiels S, Ohashi Y, Pignon JP, et al. Benefit of adjuvant chemotherapy for resectable gastric cancer a meta-analysis. JAMA. 2010;303:1729–1737. doi: 10.1001/jama.2010.534. [DOI] [PubMed] [Google Scholar]
  • 4.Lauren P. 2 histological main types of gastric carcinoma—diffuse and so-called intestinal-type carcinoma—an attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 1965;64:31–49. doi: 10.1111/apm.1965.64.1.31. [DOI] [PubMed] [Google Scholar]
  • 5.Kuang RG, Wu HX, Hao GX, Wang JW, Zhou CJ. Expression and significance of IGF-2, PCNA, MMP-7, and α-actin in gastric carcinoma with Lauren classification. Turk J Gastroenterol. 2013;24:99–108. doi: 10.4318/tjg.2013.0571. [DOI] [PubMed] [Google Scholar]
  • 6.Warneke VS, Behrens HM, Haag J, Balschun K, Boger C, Becker T, et al. Prognostic and putative predictive biomarkers of gastric cancer for personalized medicine. Diagn Mol Pathol. 2013;22:127–137. doi: 10.1097/PDM.0b013e318284188e. [DOI] [PubMed] [Google Scholar]
  • 7.Vauhkonen M, Vauhkonen H, Sipponen P. Pathology and molecular biology of gastric cancer. Best Pract Res Clin Gastroenterol. 2006;20:651–674. doi: 10.1016/j.bpg.2006.03.016. [DOI] [PubMed] [Google Scholar]
  • 8.Barczyk M, Carracedo S, Gullberg D. Integrins. Cell Tissue Res. 2010;339:269–280. doi: 10.1007/s00441-009-0834-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Felding-Habermann B, Mueller BM, Romerdahl CA, Cheresh DA. Involvement of integrin alpha V gene expression in human melanoma tumorigenicity. J Clin Invest. 1992;89:2018–2022. doi: 10.1172/JCI115811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Fornaro M, Manes T, Languino LR. Integrins and prostate cancer metastases. Cancer Metastasis Rev. 2001;20:321–331. doi: 10.1023/A:1015547830323. [DOI] [PubMed] [Google Scholar]
  • 11.Chi F, Fu D, Zhang X, Lv Z, Wang Z. Expression of the c-Met proto-oncogene and integrin α5β1 in human gastric cardia adenocarcinoma. Biosci Biotechnol Biochem. 2012;76:1471–1476. doi: 10.1271/bbb.120132. [DOI] [PubMed] [Google Scholar]
  • 12.Kawashima A, Tsugawa S, Boku A, Kobayashi M, Minamoto T, Nakanishi I, et al. Expression of αv integrin family in gastric carcinomas: increased αvβ6 is associated with lymph node metastasis. Pathol Res Pract. 2003;199:57–64. doi: 10.1078/0344-0338-00355. [DOI] [PubMed] [Google Scholar]
  • 13.Zhuang Z, Zhou R, Xu X, Tian T, Liu Y, Liu Y, et al. Clinical significance of integrin αvβ6 expression effects on gastric carcinoma invasiveness and progression via cancer-associated fibroblasts. Med Oncol. 2013;30:580. doi: 10.1007/s12032-013-0580-1. [DOI] [PubMed] [Google Scholar]
  • 14.Zhang ZY, Xu KS, Wang JS, Yang GY, Wang W, Wang JY, et al. Integrin αvβ6 acts as a prognostic indicator in gastric carcinoma. Clin Oncol. 2008;20:61–66. doi: 10.1016/j.clon.2007.09.008. [DOI] [PubMed] [Google Scholar]
  • 15.Ren J, Xu S, Guo D, Zhang J, Liu S. Increased expression of α5β1-integrin is a prognostic marker for patients with gastric cancer. Clin Transl Oncol. 2014;16:668–674. doi: 10.1007/s12094-013-1133-y. [DOI] [PubMed] [Google Scholar]
  • 16.Chamberlain MC, Cloughsey T, Reardon DA, Wen PY. A novel treatment for glioblastoma: integrin inhibition. Expert Rev Neurother. 2012;12:421–435. doi: 10.1586/ern.11.188. [DOI] [PubMed] [Google Scholar]
  • 17.Tabatabai G, Weller M, Nabors B, Picard M, Reardon D, Mikkelsen T, et al. Targeting integrins in malignant glioma. Target Oncol. 2010;5:175–181. doi: 10.1007/s11523-010-0156-3. [DOI] [PubMed] [Google Scholar]
  • 18.Cox D, Brennan M, Moran N. Integrins as therapeutic targets: lessons and opportunities. Nat Rev Drug Discov. 2010;9:804–820. doi: 10.1038/nrd3266. [DOI] [PubMed] [Google Scholar]
  • 19.Goodman SL, Picard M. Integrins as therapeutic targets. Trends Pharmacol Sci. 2012;33:405–412. doi: 10.1016/j.tips.2012.04.002. [DOI] [PubMed] [Google Scholar]
  • 20.Goodman S, Grote HJ, Wilm C. Matched rabbit monoclonal antibodies against αv-series integrins reveal a novel αvβ3-LIBS epitope, and permit routine staining of archival paraffin samples of human tumors. Biol Open. 2012;1:329–340. doi: 10.1242/bio.2012364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Kawahara E, Ooi A, Nakanishi I. Integrin distribution in gastric carcinoma: association of beta 3 and beta 5 integrins with tumor invasiveness. Pathol Int. 1995;45:493–500. doi: 10.1111/j.1440-1827.1995.tb03491.x. [DOI] [PubMed] [Google Scholar]
  • 22.Wang K, Yuen ST, Xu J, Lee SP, Yan HH, Shi ST, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014;46:573–582. doi: 10.1038/ng.2983. [DOI] [PubMed] [Google Scholar]
  • 23.The Cancer Genome Atlas Research Network Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014 doi: 10.1038/nature13480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Wittekind C, Oberschmid B. TNM classification of malignant tumors 2010. Pathologe. 2010;31:333–338. doi: 10.1007/s00292-010-1301-6. [DOI] [PubMed] [Google Scholar]
  • 25.Warneke VS, Behrens HM, Hartmann JT, Held H, Becker T, Schwarz NT, et al. Cohort study based on the seventh edition of the TNM classification for gastric cancer: proposal of a new staging system. J Clin Oncol. 2011;29:2364–2371. doi: 10.1200/JCO.2010.34.4358. [DOI] [PubMed] [Google Scholar]
  • 26.Packeisen J, Korsching E, Herbst H, Boecker W, Buerger H. Demystified… tissue microarray technology. Mol Pathol. 2003;56:198–204. doi: 10.1136/mp.56.4.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Simon E, Petke D, Boger C, Behrens HM, Warneke V, Ebert M, et al. The spatial distribution of LGR5+ cells correlates with gastric cancer progression. PLoS One. 2012 doi: 10.1371/journal.pone.0035486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Benjamini Y. Discovering the false discovery rate. J R Stat Soc Ser B Stat Methodol. 2010;72:405–416. doi: 10.1111/j.1467-9868.2010.00746.x. [DOI] [Google Scholar]
  • 29.Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–2917. doi: 10.1002/ijc.25516. [DOI] [PubMed] [Google Scholar]
  • 30.Lordick F, Schulze T. Molecular prognostic factors and new systemic therapies in gastric cancer. Onkologe. 2008;14:389–395. doi: 10.1007/s00761-008-1339-8. [DOI] [Google Scholar]
  • 31.Smyth EC, Cunningham D. Targeted therapy for gastric cancer. Curr Treat Options Oncol. 2012;13:377–389. doi: 10.1007/s11864-012-0192-6. [DOI] [PubMed] [Google Scholar]
  • 32.Oliveira-Ferrer L, Hauschild J, Fiedler W, Bokemeyer C, Nippgen J, Celik I, et al. Cilengitide induces cellular detachment and apoptosis in endothelial and glioma cells mediated by inhibition of FAK/src/AKT pathway. J Exp Clin Cancer Res. 2008;27:86. doi: 10.1186/1756-9966-27-86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Albert JM, Cao C, Geng L, Leavitt L, Hallahan DE, Lu B. Integrin αvβ3 antagonist cilengitide enhances efficacy of radiotherapy in endothelial cell and non-small-cell lung cancer models. Int J Radiat Oncol Biol Phys. 2006;65:1536–1543. doi: 10.1016/j.ijrobp.2006.04.036. [DOI] [PubMed] [Google Scholar]
  • 34.Burke PA, DeNardo SJ, Miers LA, Lamborn KR, Matzku S, DeNardo GL. Cilengitide targeting of αvβ3 integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Res. 2002;62:4263–4272. [PubMed] [Google Scholar]
  • 35.Reardon DA, Nabors LB, Stupp R, Mikkelsen T. Cilengitide: an integrin-targeting arginine-glycine-aspartic acid peptide with promising activity for glioblastoma multiforme. Expert Opin Investig Drugs. 2008;17:1225–1235. doi: 10.1517/13543784.17.8.1225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Loges S, Butzal M, Otten J, Schweizer M, Fischer U, Bokemeyer C, et al. Cilengitide inhibits proliferation and differentiation of human endothelial progenitor cells in vitro. Biochem Biophys Res Commun. 2007;357:1016–1020. doi: 10.1016/j.bbrc.2007.04.060. [DOI] [PubMed] [Google Scholar]
  • 37.Carter A. Integrins as target: first phase III trial launches, but questions remain. J Natl Cancer Inst. 2010;102:675–677. doi: 10.1093/jnci/djq186. [DOI] [PubMed] [Google Scholar]
  • 38.Reardon DA, Fink KL, Mikkelsen T, Cloughesy TF, O’Neill A, Plotkin S, et al. Randomized phase II study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme. J Clin Oncol. 2008;26:5610–5617. doi: 10.1200/JCO.2008.16.7510. [DOI] [PubMed] [Google Scholar]
  • 39.Manegold C, Vansteenkiste J, Cardenal F, Schutte W, Woll P, Ulsperger E, et al. Randomized phase II study of three doses of the integrin inhibitor cilengitide versus docetaxel as second-line treatment for patients with advanced non-small cell lung cancer. Invest New Drugs. 2013;31:175–182. doi: 10.1007/s10637-012-9842-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Sipos B, Kalthoff H, Klöppel G, Goodman SL. Expression of functional forms avb3, avb5, laminin-5, vitronectin and EGF-R in human tumors: consequences for cilengitide targeting. Cancer Res Suppl. 2010;70:2031. doi: 10.1158/1538-7445.AM10-2031. [DOI] [Google Scholar]
  • 41.Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G, et al. Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell. 1994;79:1157–1164. doi: 10.1016/0092-8674(94)90007-8. [DOI] [PubMed] [Google Scholar]
  • 42.Wu YH, Grabsch H, Ivanova T, Tan IB, Murray J, Ooi CH, et al. Comprehensive genomic meta-analysis identifies intra-tumoural stroma as a predictor of survival in patients with gastric cancer. Gut. 2013;62:1100–1111. doi: 10.1136/gutjnl-2011-301373. [DOI] [PubMed] [Google Scholar]
  • 43.Canel M, Serrels A, Frame MC, Brunton VG. E-cadherin-integrin crosstalk in cancer invasion and metastasis. J Cell Sci. 2013;126:393–401. doi: 10.1242/jcs.100115. [DOI] [PubMed] [Google Scholar]
  • 44.Huveneers S, Danen EH. Adhesion signaling—crosstalk between integrins, Src and Rho. J Cell Sci. 2009;122:1059–1069. doi: 10.1242/jcs.039446. [DOI] [PubMed] [Google Scholar]
  • 45.Hecht JL, Dolinski BM, Gardner HA, Violette SM, Weinreb PH. Overexpression of the αvβ6 integrin in endometrial cancer. Appl Immunohistochem Mol Morphol. 2008;16:543–547. doi: 10.1097/PAI.0b013e31816bc5ee. [DOI] [PubMed] [Google Scholar]
  • 46.Hazelbag S, Kenter GG, Gorter A, Dreef EJ, Koopman LA, Violette SM, et al. Overexpression of the αvβ6 integrin in cervical squamous cell carcinoma is a prognostic factor for decreased survival. J Pathol. 2007;212:316–324. doi: 10.1002/path.2168. [DOI] [PubMed] [Google Scholar]
  • 47.Ahmed N, Riley C, Rice GE, Quinn MA, Baker MS. αvβ6 integrin-a marker for the malignant potential of epithelial ovarian cancer. J Histochem Cytochem. 2002;50:1371–1379. doi: 10.1177/002215540205001010. [DOI] [PubMed] [Google Scholar]
  • 48.Ha SY, Shin J, Kim JH, Kang MS, Yoo HY, Kim HH, et al. Overexpression of integrin αv correlates with poor prognosis in colorectal cancer. J Clin Pathol. 2014 doi: 10.1136/jclinpath-2013-202163. [DOI] [PubMed] [Google Scholar]
  • 49.Boger C, Kalthoff H, Goodman SL, Rocken C. Validation and comparison of anti-αvβ3 and anti-αvβ5 rabbit monoclonal versus murine monoclonal antibodies in four different tumor entities. Appl Immunohistochem Mol Morphol. 2013;21:553–560. doi: 10.1097/PAI.0b013e318284a03a. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials


Articles from Gastric Cancer are provided here courtesy of Springer

RESOURCES