Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Jan 15;90(2):664–668. doi: 10.1073/pnas.90.2.664

Construction of chimeric alleles with altered specificity at the b incompatibility locus of Ustilago maydis.

A R Yee 1, J W Kronstad 1
PMCID: PMC45724  PMID: 8421703

Abstract

Multiallelic incompatibility systems found in many fungi and plants function to limit inbreeding by mediating self versus nonself recognition. The plant pathogenic fungus Ustilago maydis has a locus called b that governs incompatibility. Two multiallelic genes, bE and bW, are present at the b locus. Fusion of haploid strains carrying different alleles at bE and bW establishes an infectious dikaryon capable of pathogenesis on maize (Zea mays). Cells carrying a single type of b locus, whether haploid or dikaryotic, are nonpathogenic. To identify sequences within the bE gene that determine allelic specificity, targeted gene replacement was employed to produce a series of chimeras between the b1E and b2E alleles. Incompatibility tests with strains carrying the chimeric alleles identified a 30- to 48-amino acid region responsible for specificity. Suprisingly, the chimeras with recombination points within this region had a specificity different from both parent alleles. Overall, these results define an important domain in bE involved in self versus nonself recognition.

Full text

PDF
664

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakkeren G., Gibbard B., Yee A., Froeliger E., Leong S., Kronstad J. The a and b loci of Ustilago maydis hybridize with DNA sequences from other smut fungi. Mol Plant Microbe Interact. 1992 Jul-Aug;5(4):347–355. doi: 10.1094/mpmi-5-347. [DOI] [PubMed] [Google Scholar]
  2. Bölker M., Urban M., Kahmann R. The a mating type locus of U. maydis specifies cell signaling components. Cell. 1992 Feb 7;68(3):441–450. doi: 10.1016/0092-8674(92)90182-c. [DOI] [PubMed] [Google Scholar]
  3. Casanova J. L., Pannetier C., Jaulin C., Kourilsky P. Optimal conditions for directly sequencing double-stranded PCR products with sequenase. Nucleic Acids Res. 1990 Jul 11;18(13):4028–4028. doi: 10.1093/nar/18.13.4028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Day P. R., Anagnostakis S. L., Puhalla J. E. Pathogenicity resulting from mutation at the b locus of Ustilago maydis. Proc Natl Acad Sci U S A. 1971 Mar;68(3):533–535. doi: 10.1073/pnas.68.3.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Elder R. T., Loh E. Y., Davis R. W. RNA from the yeast transposable element Ty1 has both ends in the direct repeats, a structure similar to retrovirus RNA. Proc Natl Acad Sci U S A. 1983 May;80(9):2432–2436. doi: 10.1073/pnas.80.9.2432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fotheringham S., Holloman W. K. Pathways of transformation in Ustilago maydis determined by DNA conformation. Genetics. 1990 Apr;124(4):833–843. doi: 10.1093/genetics/124.4.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Froeliger E. H., Leong S. A. The a mating-type alleles of Ustilago maydis are idiomorphs. Gene. 1991 Apr;100:113–122. doi: 10.1016/0378-1119(91)90356-g. [DOI] [PubMed] [Google Scholar]
  8. Gillissen B., Bergemann J., Sandmann C., Schroeer B., Bölker M., Kahmann R. A two-component regulatory system for self/non-self recognition in Ustilago maydis. Cell. 1992 Feb 21;68(4):647–657. doi: 10.1016/0092-8674(92)90141-x. [DOI] [PubMed] [Google Scholar]
  9. Haring V., Gray J. E., McClure B. A., Anderson M. A., Clarke A. E. Self-incompatibility: a self-recognition system in plants. Science. 1990 Nov 16;250(4983):937–941. doi: 10.1126/science.2237440. [DOI] [PubMed] [Google Scholar]
  10. Kronstad J. W., Leong S. A. Isolation of two alleles of the b locus of Ustilago maydis. Proc Natl Acad Sci U S A. 1989 Feb;86(3):978–982. doi: 10.1073/pnas.86.3.978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kronstad J. W., Leong S. A. The b mating-type locus of Ustilago maydis contains variable and constant regions. Genes Dev. 1990 Aug;4(8):1384–1395. doi: 10.1101/gad.4.8.1384. [DOI] [PubMed] [Google Scholar]
  12. Kronstad J. W., Wang J., Covert S. F., Holden D. W., McKnight G. L., Leong S. A. Isolation of metabolic genes and demonstration of gene disruption in the phytopathogenic fungus Ustilago maydis. Gene. 1989 Jun 30;79(1):97–106. doi: 10.1016/0378-1119(89)90095-4. [DOI] [PubMed] [Google Scholar]
  13. Puhalla J. E. The formation of diploids of Ustilago maydis on agar medium. Phytopathology. 1969 Nov;59(11):1771–1772. [PubMed] [Google Scholar]
  14. Schulz B., Banuett F., Dahl M., Schlesinger R., Schäfer W., Martin T., Herskowitz I., Kahmann R. The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell. 1990 Jan 26;60(2):295–306. doi: 10.1016/0092-8674(90)90744-y. [DOI] [PubMed] [Google Scholar]
  15. Toneguzzo F., Glynn S., Levi E., Mjolsness S., Hayday A. Use of a chemically modified T7 DNA polymerase for manual and automated sequencing of supercoiled DNA. Biotechniques. 1988 May;6(5):460–469. [PubMed] [Google Scholar]
  16. Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]
  17. Wang J., Holden D. W., Leong S. A. Gene transfer system for the phytopathogenic fungus Ustilago maydis. Proc Natl Acad Sci U S A. 1988 Feb;85(3):865–869. doi: 10.1073/pnas.85.3.865. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES