Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Jan 15;90(2):712–715. doi: 10.1073/pnas.90.2.712

Regulation of cysteine-rich intestinal protein by dexamethasone in the neonatal rat.

C W Levenson 1, N F Shay 1, L M Lee-Ambrose 1, R J Cousins 1
PMCID: PMC45735  PMID: 8421709

Abstract

The cysteine-rich intestinal protein (CRIP) is an intestinal zinc-binding protein containing a single copy of a cysteine-rich domain known as the LIM motif. CRIP mRNA and protein levels increased in the rat small intestine throughout the suckling period, reaching highest levels by the late weanling stage. A similar developmental pattern of CRIP protein levels was also detected by an increase in zinc binding to CRIP-containing HPLC fractions of intestinal cytosol. Administration of the synthetic glucocorticoid hormone dexamethasone to neonates caused the precocious rise of CRIP mRNA and protein. In adult rats, CRIP mRNA levels were not significantly altered by dexamethasone. Maximal CRIP mRNA content was detected in cells from the mid-villus, as confirmed by expression of cryptdin mRNA. In this report we show the glucocorticoid regulation of the LIM motif-containing protein CRIP and suggest that glucocorticoid hormones play a role in developmental regulation of CRIP.

Full text

PDF
712

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birkenmeier E. H., Gordon J. I. Developmental regulation of a gene that encodes a cysteine-rich intestinal protein and maps near the murine immunoglobulin heavy chain locus. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2516–2520. doi: 10.1073/pnas.83.8.2516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boehm T., Foroni L., Kennedy M., Rabbitts T. H. The rhombotin gene belongs to a class of transcriptional regulators with a potential novel protein dimerisation motif. Oncogene. 1990 Jul;5(7):1103–1105. [PubMed] [Google Scholar]
  3. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  4. DiSilvestro R. A., Cousins R. J. Glucocorticoid independent mediation of interleukin-1 induced changes in serum zinc and liver metallothionein levels. Life Sci. 1984 Nov 19;35(21):2113–2118. doi: 10.1016/0024-3205(84)90510-1. [DOI] [PubMed] [Google Scholar]
  5. Durnam D. M., Perrin F., Gannon F., Palmiter R. D. Isolation and characterization of the mouse metallothionein-I gene. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6511–6515. doi: 10.1073/pnas.77.11.6511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eaton D. L., Toal B. F. Evaluation of the Cd/hemoglobin affinity assay for the rapid determination of metallothionein in biological tissues. Toxicol Appl Pharmacol. 1982 Oct;66(1):134–142. doi: 10.1016/0041-008x(82)90068-0. [DOI] [PubMed] [Google Scholar]
  7. Freyd G., Kim S. K., Horvitz H. R. Novel cysteine-rich motif and homeodomain in the product of the Caenorhabditis elegans cell lineage gene lin-11. Nature. 1990 Apr 26;344(6269):876–879. doi: 10.1038/344876a0. [DOI] [PubMed] [Google Scholar]
  8. Hempe J. M., Cousins R. J. Cysteine-rich intestinal protein and intestinal metallothionein: an inverse relationship as a conceptual model for zinc absorption in rats. J Nutr. 1992 Jan;122(1):89–95. doi: 10.1093/jn/122.1.89. [DOI] [PubMed] [Google Scholar]
  9. Hempe J. M., Cousins R. J. Cysteine-rich intestinal protein binds zinc during transmucosal zinc transport. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9671–9674. doi: 10.1073/pnas.88.21.9671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Henning S. J. Postnatal development: coordination of feeding, digestion, and metabolism. Am J Physiol. 1981 Sep;241(3):G199–G214. doi: 10.1152/ajpgi.1981.241.3.G199. [DOI] [PubMed] [Google Scholar]
  11. Leeper L. L., Henning S. J. Development and tissue distribution of sucrase-isomaltase mRNA in rats. Am J Physiol. 1990 Jan;258(1 Pt 1):G52–G58. doi: 10.1152/ajpgi.1990.258.1.G52. [DOI] [PubMed] [Google Scholar]
  12. Li P. M., Reichert J., Freyd G., Horvitz H. R., Walsh C. T. The LIM region of a presumptive Caenorhabditis elegans transcription factor is an iron-sulfur- and zinc-containing metallodomain. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9210–9213. doi: 10.1073/pnas.88.20.9210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nichols G. M., Pearce A. R., Alverez X., Bibb N. K., Nichols K. Y., Alfred C. B., Glass J. The mechanisms of nonheme iron uptake determined in IEC-6 rat intestinal cells. J Nutr. 1992 Apr;122(4):945–952. doi: 10.1093/jn/122.4.945. [DOI] [PubMed] [Google Scholar]
  14. Ouellette A. J., Greco R. M., James M., Frederick D., Naftilan J., Fallon J. T. Developmental regulation of cryptdin, a corticostatin/defensin precursor mRNA in mouse small intestinal crypt epithelium. J Cell Biol. 1989 May;108(5):1687–1695. doi: 10.1083/jcb.108.5.1687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Quinones S. R., Cousins R. J. Augmentation of dexamethasone induction of rat liver metallothionein by zinc. Biochem J. 1984 May 1;219(3):959–963. doi: 10.1042/bj2190959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Royer-Pokora B., Loos U., Ludwig W. D. TTG-2, a new gene encoding a cysteine-rich protein with the LIM motif, is overexpressed in acute T-cell leukaemia with the t(11;14)(p13;q11). Oncogene. 1991 Oct;6(10):1887–1893. [PubMed] [Google Scholar]
  17. Wang X., Lee G., Liebhaber S. A., Cooke N. E. Human cysteine-rich protein. A member of the LIM/double-finger family displaying coordinate serum induction with c-myc. J Biol Chem. 1992 May 5;267(13):9176–9184. [PubMed] [Google Scholar]
  18. Weiser M. M. Intestinal epithelial cell surface membrane glycoprotein synthesis. I. An indicator of cellular differentiation. J Biol Chem. 1973 Apr 10;248(7):2536–2541. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES