Abstract
Evidence from prokaryotic systems suggests that enzymes of dNTP synthesis are organized near the DNA replication apparatus, allowing direct utilization of dNTPs at their sites of synthesis. To investigate whether similar interactions exist within a eukaryotic environment, we have prepared anti-idiotypic antibodies to the small subunit of vaccinia virus ribonucleotide reductase, and we used these antibodies to search for proteins that interact with this enzyme. This approach identified a 34-kDa viral phosphoprotein, which, like ribonucleotide reductase itself, is localized within infected cells at DNA replication sites. After expression of its structural gene in Escherichia coli, the recombinant protein was purified and found (i) to bind tightly to single-stranded DNA and (ii) to stimulate enzymatic activity of vaccinia ribonucleotide reductase. These observations suggest a physical association between dNTP synthesis and DNA replication in this viral system.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chase J. W., Williams K. R. Single-stranded DNA binding proteins required for DNA replication. Annu Rev Biochem. 1986;55:103–136. doi: 10.1146/annurev.bi.55.070186.000535. [DOI] [PubMed] [Google Scholar]
- Goebel S. J., Johnson G. P., Perkus M. E., Davis S. W., Winslow J. P., Paoletti E. The complete DNA sequence of vaccinia virus. Virology. 1990 Nov;179(1):247-66, 517-63. doi: 10.1016/0042-6822(90)90294-2. [DOI] [PubMed] [Google Scholar]
- Gratzner H. G. Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: A new reagent for detection of DNA replication. Science. 1982 Oct 29;218(4571):474–475. doi: 10.1126/science.7123245. [DOI] [PubMed] [Google Scholar]
- Howell M. L., Sanders-Loehr J., Loehr T. M., Roseman N. A., Mathews C. K., Slabaugh M. B. Cloning of the vaccinia virus ribonucleotide reductase small subunit gene. Characterization of the gene product expressed in Escherichia coli. J Biol Chem. 1992 Jan 25;267(3):1705–1711. [PubMed] [Google Scholar]
- Krassa K. B., Green L. S., Gold L. Protein-protein interactions with the acidic COOH terminus of the single-stranded DNA-binding protein of the bacteriophage T4. Proc Natl Acad Sci U S A. 1991 May 1;88(9):4010–4014. doi: 10.1073/pnas.88.9.4010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mathews C. K. Enzyme organization in DNA precursor biosynthesis. Prog Nucleic Acid Res Mol Biol. 1993;44:167–203. doi: 10.1016/s0079-6603(08)60220-2. [DOI] [PubMed] [Google Scholar]
- Mathews C. K., Sinha N. K. Are DNA precursors concentrated at replication sites? Proc Natl Acad Sci U S A. 1982 Jan;79(2):302–306. doi: 10.1073/pnas.79.2.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nowakowski M., Bauer W., Kates J. Characterization of a DNA-binding phosphoprotein from vaccinia virus replication complex. Virology. 1978 May 1;86(1):217–225. doi: 10.1016/0042-6822(78)90022-3. [DOI] [PubMed] [Google Scholar]
- Nowakowski M., Kates J., Bauer W. Isolation of two DNA-binding proteins from the intracellular replication complex of vaccinia virus. Virology. 1978 Feb;84(2):260–267. doi: 10.1016/0042-6822(78)90246-5. [DOI] [PubMed] [Google Scholar]
- Polisky B., Kates J. Vaccinia virus intracellular DNA-protein complex: biochemical characteristics of associated protein. Virology. 1972 Jul;49(1):168–179. doi: 10.1016/s0042-6822(72)80018-7. [DOI] [PubMed] [Google Scholar]
- Polisky B., Kates J. Viral-specific polypeptides associated with newly replicated vaccinia DNA. Virology. 1975 Jul;66(1):128–139. doi: 10.1016/0042-6822(75)90184-1. [DOI] [PubMed] [Google Scholar]
- Prasad P. V., Jones A. M. Putative receptor for the plant growth hormone auxin identified and characterized by anti-idiotypic antibodies. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5479–5483. doi: 10.1073/pnas.88.13.5479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prem veer Reddy G., Pardee A. B. Multienzyme complex for metabolic channeling in mammalian DNA replication. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3312–3316. doi: 10.1073/pnas.77.6.3312. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sarov I., Joklik W. K. Isolation and characterization of intermediates in vaccinia virus morphogenesis. Virology. 1973 Mar;52(1):223–233. doi: 10.1016/0042-6822(73)90411-x. [DOI] [PubMed] [Google Scholar]
- Schmitt J. F., Stunnenberg H. G. Sequence and transcriptional analysis of the vaccinia virus HindIII I fragment. J Virol. 1988 Jun;62(6):1889–1897. doi: 10.1128/jvi.62.6.1889-1897.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soloski M. J., Esteban M., Holowczak J. A. DNA-binding proteins in the cytoplasm of vaccinia virus-infected mouse L-cells. J Virol. 1978 Jan;25(1):263–273. doi: 10.1128/jvi.25.1.263-273.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
- Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tengelsen L. A., Slabaugh M. B., Bibler J. K., Hruby D. E. Nucleotide sequence and molecular genetic analysis of the large subunit of ribonucleotide reductase encoded by vaccinia virus. Virology. 1988 May;164(1):121–131. doi: 10.1016/0042-6822(88)90627-7. [DOI] [PubMed] [Google Scholar]
- Young J. P., Mathews C. K. Interactions between T4 phage-coded deoxycytidylate hydroxymethylase and thymidylate synthase as revealed with an anti-idiotypic antibody. J Biol Chem. 1992 May 25;267(15):10786–10790. [PubMed] [Google Scholar]