Abstract
In chicken embryo retina, competence for induction of the glutamine synthetase [L-glutamate:ammonia ligase (ADP-forming); EC 6.3.1.2] gene by glucocorticoid hormones increases progressively with development; this competence is minimal in 6-day retina (E6) and high by day 10 (E10). Because the level of glucocorticoid receptors (GRs) in the retina does not increase during that time, we investigated whether the transcriptional activity of GR increased between days 6 and 10 of development. The glucocorticoid-inducible chloramphenicol acetyltransferase (CAT) constructs 2GRE-37TK and p delta G46TCO, which contain glucocorticoid-responsive elements attached to a TATA box and to the thymidine kinase promoter, respectively, were transfected into E6 and E10 retinas, and their inducibility was examined. CAT expression could be induced in the transfected E10 retina but was not induced in the transfected E6 retina. However, induction was obtained also in E6 retina after cotransfection with a GR expression vector. Noninducible CAT constructs (pRSV-CAT, pSV2CAT, and pBLCAT2) were expressed at both ages at similar levels. The CAT construct pGS2.1CAT, which is controlled by the upstream sequence of the chicken glutamine synthetase gene, could be induced in E10 retina but was not induced in E6 retina; however, cotransfection with the GR expression vector resulted in induction of pGS2.1CAT also in E6 retina. We interpret these results as showing that the transcriptional activity of GR in embryonic retina is developmentally controlled and suggest that its increase is causally implicated in the development of competence for glutamine synthetase induction.
Full text
PDF![1117](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b01/45822/ee1a1454f904/pnas01101-0343.png)
![1118](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b01/45822/bf6aa028c0e6/pnas01101-0344.png)
![1119](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b01/45822/2c0d80a786b5/pnas01101-0345.png)
![1120](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b01/45822/9afc61ffdb6e/pnas01101-0346.png)
![1121](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b01/45822/55de23e57142/pnas01101-0347.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Auricchio F. Phosphorylation of steroid receptors. J Steroid Biochem. 1989 Apr;32(4):613–622. doi: 10.1016/0022-4731(89)90397-x. [DOI] [PubMed] [Google Scholar]
- Bagchi M. K., Tsai S. Y., Tsai M. J., O'Malley B. W. Ligand and DNA-dependent phosphorylation of human progesterone receptor in vitro. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2664–2668. doi: 10.1073/pnas.89.7.2664. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beato M. Gene regulation by steroid hormones. Cell. 1989 Feb 10;56(3):335–344. doi: 10.1016/0092-8674(89)90237-7. [DOI] [PubMed] [Google Scholar]
- Brüggemeier U., Kalff M., Franke S., Scheidereit C., Beato M. Ubiquitous transcription factor OTF-1 mediates induction of the MMTV promoter through synergistic interaction with hormone receptors. Cell. 1991 Feb 8;64(3):565–572. doi: 10.1016/0092-8674(91)90240-y. [DOI] [PubMed] [Google Scholar]
- Danesch U., Gloss B., Schmid W., Schütz G., Schüle R., Renkawitz R. Glucocorticoid induction of the rat tryptophan oxygenase gene is mediated by two widely separated glucocorticoid-responsive elements. EMBO J. 1987 Mar;6(3):625–630. doi: 10.1002/j.1460-2075.1987.tb04800.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danielsen M., Stallcup M. R. Down-regulation of glucocorticoid receptors in mouse lymphoma cell variants. Mol Cell Biol. 1984 Mar;4(3):449–453. doi: 10.1128/mcb.4.3.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denner L. A., Weigel N. L., Maxwell B. L., Schrader W. T., O'Malley B. W. Regulation of progesterone receptor-mediated transcription by phosphorylation. Science. 1990 Dec 21;250(4988):1740–1743. doi: 10.1126/science.2176746. [DOI] [PubMed] [Google Scholar]
- Gorman C. M., Merlino G. T., Willingham M. C., Pastan I., Howard B. H. The Rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eukaryotic cells by DNA-mediated transfection. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6777–6781. doi: 10.1073/pnas.79.22.6777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imai E., Stromstedt P. E., Quinn P. G., Carlstedt-Duke J., Gustafsson J. A., Granner D. K. Characterization of a complex glucocorticoid response unit in the phosphoenolpyruvate carboxykinase gene. Mol Cell Biol. 1990 Sep;10(9):4712–4719. doi: 10.1128/mcb.10.9.4712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jonat C., Rahmsdorf H. J., Park K. K., Cato A. C., Gebel S., Ponta H., Herrlich P. Antitumor promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell. 1990 Sep 21;62(6):1189–1204. doi: 10.1016/0092-8674(90)90395-u. [DOI] [PubMed] [Google Scholar]
- Jones K. A., Yamamoto K. R., Tjian R. Two distinct transcription factors bind to the HSV thymidine kinase promoter in vitro. Cell. 1985 Sep;42(2):559–572. doi: 10.1016/0092-8674(85)90113-8. [DOI] [PubMed] [Google Scholar]
- Koehler D. E., Moscona A. A. Corticosteroid receptors in the neural retina and other tissues of the chick embryo. Arch Biochem Biophys. 1975 Sep;170(1):102–113. doi: 10.1016/0003-9861(75)90101-0. [DOI] [PubMed] [Google Scholar]
- Landers J. P., Spelsberg T. C. New concepts in steroid hormone action: transcription factors, proto-oncogenes, and the cascade model for steroid regulation of gene expression. Crit Rev Eukaryot Gene Expr. 1992;2(1):19–63. [PubMed] [Google Scholar]
- Linser P. J., Moscona A. A. Induction of glutamine synthetase in embryonic neural retina: its suppression by the gliatoxic agent alpha-aminoadipic acid. Brain Res. 1981 Jan;227(1):103–119. doi: 10.1016/0165-3806(81)90097-3. [DOI] [PubMed] [Google Scholar]
- Linser P., Moscona A. A. Induction of glutamine synthetase in embryonic neural retina: localization in Müller fibers and dependence on cell interactions. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6476–6480. doi: 10.1073/pnas.76.12.6476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luckow B., Schütz G. CAT constructions with multiple unique restriction sites for the functional analysis of eukaryotic promoters and regulatory elements. Nucleic Acids Res. 1987 Jul 10;15(13):5490–5490. doi: 10.1093/nar/15.13.5490. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marie C. Ontogenesis of the adrenal glucocorticoids and of the target function of the enzymatic tyrosine transaminase activity in the chick embryo. J Endocrinol. 1981 Aug;90(2):193–200. doi: 10.1677/joe.0.0900193. [DOI] [PubMed] [Google Scholar]
- Mendel D. B., Bodwell J. E., Munck A. Glucocorticoid receptors lacking hormone-binding activity are bound in nuclei of ATP-depleted cells. Nature. 1986 Dec 4;324(6096):478–480. doi: 10.1038/324478a0. [DOI] [PubMed] [Google Scholar]
- Miesfeld R., Rusconi S., Godowski P. J., Maler B. A., Okret S., Wikström A. C., Gustafsson J. A., Yamamoto K. R. Genetic complementation of a glucocorticoid receptor deficiency by expression of cloned receptor cDNA. Cell. 1986 Aug 1;46(3):389–399. doi: 10.1016/0092-8674(86)90659-8. [DOI] [PubMed] [Google Scholar]
- Moscona A. A. Conversion of retina glia cells into lenslike phenotype following disruption of normal cell contacts. Curr Top Dev Biol. 1986;20:1–19. doi: 10.1016/s0070-2153(08)60651-1. [DOI] [PubMed] [Google Scholar]
- Moscona A. A., Degenstein L. Normal development and precocious induction of glutamine synthetase in the neural retina of the quail embryo. Dev Neurosci. 1981;4(3):211–219. doi: 10.1159/000112758. [DOI] [PubMed] [Google Scholar]
- Moscona A. A., Linser P. Developmental and experimental changes in retinal glia cells: cell interactions and control of phenotype expression and stability. Curr Top Dev Biol. 1983;18:155–188. doi: 10.1016/s0070-2153(08)60582-7. [DOI] [PubMed] [Google Scholar]
- Okret S., Dong Y., Tanaka H., Cairns B., Gustafsson J. A. The mechanism for glucocorticoid-resistance in a rat hepatoma cell variant that contains functional glucocorticoid receptor. J Steroid Biochem Mol Biol. 1991;40(1-3):353–361. doi: 10.1016/0960-0760(91)90202-g. [DOI] [PubMed] [Google Scholar]
- Patejunas G., Young A. P. Developmentally regulated primary glucocorticoid hormone induction of chick retinal glutamine synthetase mRNA. J Cell Biochem. 1987 Nov;35(3):205–216. doi: 10.1002/jcb.240350304. [DOI] [PubMed] [Google Scholar]
- Piddington R., Moscona A. A. Precocious induction of retinal glutamine synthetase by hydrocortisone in the embryo and in culture. Age-dependent differences in tissue response. Biochim Biophys Acta. 1967 Jul 25;141(2):429–432. doi: 10.1016/0304-4165(67)90120-1. [DOI] [PubMed] [Google Scholar]
- Ponta H., Cato A. C., Herrlich P. Interference of pathway specific transcription factors. Biochim Biophys Acta. 1992 Feb 11;1129(3):255–261. doi: 10.1016/0167-4781(92)90501-p. [DOI] [PubMed] [Google Scholar]
- Pu H. F., Young A. P. Glucocorticoid-inducible expression of a glutamine synthetase-CAT-encoding fusion plasmid after transfection of intact chicken retinal explant cultures. Gene. 1990 May 14;89(2):259–263. doi: 10.1016/0378-1119(90)90014-i. [DOI] [PubMed] [Google Scholar]
- Saad A. D., Moscona A. A. Cortisol receptors and inducibility of glutamine synthetase in embryonic retina. Cell Differ. 1985 Jun;16(4):241–250. doi: 10.1016/0045-6039(85)90574-3. [DOI] [PubMed] [Google Scholar]
- Sakai D. D., Helms S., Carlstedt-Duke J., Gustafsson J. A., Rottman F. M., Yamamoto K. R. Hormone-mediated repression: a negative glucocorticoid response element from the bovine prolactin gene. Genes Dev. 1988 Sep;2(9):1144–1154. doi: 10.1101/gad.2.9.1144. [DOI] [PubMed] [Google Scholar]
- Schüle R., Muller M., Otsuka-Murakami H., Renkawitz R. Cooperativity of the glucocorticoid receptor and the CACCC-box binding factor. Nature. 1988 Mar 3;332(6159):87–90. doi: 10.1038/332087a0. [DOI] [PubMed] [Google Scholar]
- Schüle R., Rangarajan P., Kliewer S., Ransone L. J., Bolado J., Yang N., Verma I. M., Evans R. M. Functional antagonism between oncoprotein c-Jun and the glucocorticoid receptor. Cell. 1990 Sep 21;62(6):1217–1226. doi: 10.1016/0092-8674(90)90397-w. [DOI] [PubMed] [Google Scholar]
- Silva C. M., Cidlowski J. A. The effect of oxidation/reduction on the charge heterogeneity of the human glucocorticoid receptor. J Steroid Biochem Mol Biol. 1992 Jan;41(1):1–10. doi: 10.1016/0960-0760(92)90218-8. [DOI] [PubMed] [Google Scholar]
- Strähle U., Klock G., Schütz G. A DNA sequence of 15 base pairs is sufficient to mediate both glucocorticoid and progesterone induction of gene expression. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7871–7875. doi: 10.1073/pnas.84.22.7871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strähle U., Schmid W., Schütz G. Synergistic action of the glucocorticoid receptor with transcription factors. EMBO J. 1988 Nov;7(11):3389–3395. doi: 10.1002/j.1460-2075.1988.tb03212.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vanderbilt J. N., Miesfeld R., Maler B. A., Yamamoto K. R. Intracellular receptor concentration limits glucocorticoid-dependent enhancer activity. Mol Endocrinol. 1987 Jan;1(1):68–74. doi: 10.1210/mend-1-1-68. [DOI] [PubMed] [Google Scholar]
- Vardimon L., Fox L. E., Cohen-Kupiec R., Degenstein L., Moscona A. A. Expression of v-src in embryonic neural retina alters cell adhesion, inhibits histogenesis, and prevents induction of glutamine synthetase. Mol Cell Biol. 1991 Oct;11(10):5275–5284. doi: 10.1128/mcb.11.10.5275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vardimon L., Fox L. E., Moscona A. A. Accumulation of c-src mRNA is developmentally regulated in embryonic neural retina. Mol Cell Biol. 1986 Nov;6(11):4109–4111. doi: 10.1128/mcb.6.11.4109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vardimon L., Fox L. E., Moscona A. A. Developmental regulation of glutamine synthetase and carbonic anhydrase II in neural retina. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9060–9064. doi: 10.1073/pnas.83.23.9060. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vardimon L., Fox L. L., Degenstein L., Moscona A. A. Cell contacts are required for induction by cortisol of glutamine synthetase gene transcription in the retina. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5981–5985. doi: 10.1073/pnas.85.16.5981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang-Yen H. F., Chambard J. C., Sun Y. L., Smeal T., Schmidt T. J., Drouin J., Karin M. Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein-protein interaction. Cell. 1990 Sep 21;62(6):1205–1215. doi: 10.1016/0092-8674(90)90396-v. [DOI] [PubMed] [Google Scholar]
- Zhang H. Y., Young A. P. A single upstream glucocorticoid response element juxtaposed to an AP1/ATF/CRE-like site renders the chicken glutamine synthetase gene hormonally inducible in transfected retina. J Biol Chem. 1991 Dec 25;266(36):24332–24338. [PubMed] [Google Scholar]
- de Wet J. R., Wood K. V., DeLuca M., Helinski D. R., Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol. 1987 Feb;7(2):725–737. doi: 10.1128/mcb.7.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]