Skip to main content
Genome Announcements logoLink to Genome Announcements
. 2015 Sep 24;3(5):e00927-15. doi: 10.1128/genomeA.00927-15

Genome Sequence of Porphyromonas gingivalis Strain A7436

Ryan P Chastain-Gross a,b,*,, Gary Xie d, Myriam Bélanger a,b,*, Dibyendu Kumar c,*, Joan A Whitlock a,b,*, Li Liu c,*, William G Farmerie c, Hajnalka E Daligault d, Cliff S Han d, Thomas S Brettin d,*, Ann Progulske-Fox a,b,
PMCID: PMC4582566  PMID: 26404590

Abstract

Porphyromonas gingivalis is strongly associated with periodontitis. P. gingivalis strain trafficking and tissue homing differ widely, even among presumptive closely related strains, such as W83 and A7436. Here, we present the genome sequence of A7436 with a single contig of 2,367,029 bp and a G+C content of 48.33%.

GENOME ANNOUNCEMENT

Porphyromonas gingivalis is an oral bacterium that is associated with periodontal disease (1) and multiple systemic diseases (25). Importantly, P. gingivalis strains demonstrate a variety of pathogenic phenotypes in vitro and in vivo (69), whose genetic mechanisms are not entirely known. Presently, genomic sequences of P. gingivalis laboratory strains W83, ATCC 33277, TDC60, HG66, and SJD2 are available (1014). A7436 is an encapsulated strain of P. gingivalis, isolated by V. R. Dowell at the Centers for Disease Control and Prevention in Atlanta, Georgia (15). Importantly, strains A7436 and W83 share similar capsule and fimbriae characteristics (16, 17), and both persist intracellularly during infection of human coronary artery endothelial cells (HCAECs) in vitro (6). However, A7436 traffics through dissimilar HCAEC intracellular pathways and fails to induce autophagy (6), a mechanism exploited by W83. Additionally, infection of pregnant rats with A7436 causes more severe uterine and placental lesions than infection with either strain W83 or ATCC 33277, due to increased colonization of these tissues by A7436 (18). This study was undertaken to determine the complete genome sequence of A7436 and enable greater understanding of disparate host intracellular trafficking and tissue invasion phenotypes among P. gingivalis strains.

P. gingivalis strain A7436 was obtained from S. Offenbacher (University of North Carolina, Chapel Hill) and grown as previously described (19). Genomic DNA was obtained using the Wizard gDNA Purification Kit (Promega) and processed to generate shotgun and 3-kb paired-end libraries, which were sequenced using the 454 Life Sciences GS-20 instrument (20) (Roche). 573,205 reads of 148,818,518 bases, with an average read length of 259 bp, were generated.

GS-20 reads were assembled using Velvet version 0.7.63 (https://www.ebi.ac.uk/~zerbino/velvet/) (21) and Newbler version 2.3 (Roche) (20). Gaps between contigs were closed by editing in Consed (http://www.phrap.org/consed/consed.html) (2224) and by PCR-augmented Sanger sequencing. The genome was annotated using the RAST (http://metagenomics.anl.gov) (25) and IMG-ER servers (http://img.jgi.doe.gov/er) (26), then amended using Gene Prediction Improvement Pipeline software (https://geneprimp.jgi-psf.org) (27).

The genome of P. gingivalis A7436 has approximately 57-fold coverage and contains a single contig of 2,367,029 bp (G+C content of 48.33%). A total of 2,078 genes were annotated, which included 2,011 predicted coding sequences (CDSs), 53 tRNAs, 12 rRNAs, and 1 transfer-messenger (tmRNA). There are 234 subsystems in the genome. 169 protein metabolism, 164 cofactors, vitamins, prosthetic groups, and pigments, 74 RNA metabolism, 87 DNA metabolism, 96 carbohydrates, and 19 membrane transport subsystem features were observed.

The annotated P. gingivalis A7436 genome was compared to P. gingivalis strains W83, ATCC 33277, and TDC60 using RAST (25) and IMG-ER (26). All-to-all BLASTp comparisons of predicted protein sequences showed that A7436 possesses 90 strain-specific CDSs, of which 82 are annotated as hypothetical proteins. Genome clustering analysis of functional profiles suggests that A7436 is closely related to W83, as indicated by similar fimbriae and capsule characteristics (16, 17). However, the A7436 genome contains a 1.5 Mbp chromosomal inversion that may contribute to its distinct phenotypes (6).

The availability of the A7436 genome expands our ability to compare observed behavior with genotype in a growing number of P. gingivalis strains.

Nucleotide sequence accession number.

This genome sequencing project was deposited in GenBank under accession no. CP011995. The version described is the first version.

ACKNOWLEDGMENTS

This study was supported by a University of Florida College of Dentistry Multi-Investigator Pilot Program Project grant (to A.P.-F.), as well as National Institute for Dental and Craniofacial Research grant DE013545-07S1 (to A.P.-F.) and contract Y1-DE-6006-02 (to Los Alamos National Laboratory).

We thank the staff of the University of Florida Interdisciplinary Center for Biotechnology Research, especially Regina Shaw, for excellent technical assistance.

We declare no conflict of interest.

Footnotes

Citation Chastain-Gross RP, Xie G, Bélanger M, Kumar D, Whitlock JA, Liu L, Farmerie WG, Daligault HE, Han CS, Brettin TS, Progulske-Fox A. 2015. Genome sequence of Porphyromonas gingivalis strain A7436. Genome Announc 3(5):e00927-15. doi:10.1128/genomeA.00927-15.

REFERENCES

  • 1.Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr.. 1998. Microbial complexes in subgingival plaque. J Clin Periodontol 25:134–144. doi: 10.1111/j.1600-051X.1998.tb02419.x. [DOI] [PubMed] [Google Scholar]
  • 2.Haraszthy VI, Zambon JJ, Trevisan M, Zeid M, Genco RJ. 2000. Identification of periodontal pathogens in atheromatous plaques. J Periodontol 71:1554–1560. doi: 10.1902/jop.2000.71.10.1554. [DOI] [PubMed] [Google Scholar]
  • 3.Barak S, Oettinger-Barak O, Machtei EE, Sprecher H, Ohel G. 2007. Evidence of periopathogenic microorganisms in placentas of women with preeclampsia. J Periodontol 78:670–676. doi: 10.1902/jop.2007.060362. [DOI] [PubMed] [Google Scholar]
  • 4.Martinez-Martinez RE, Abud-Mendoza C, Patiño-Marin N, Rizo-Rodríguez JC, Little JW, Loyola-Rodríguez JP. 2009. Detection of periodontal bacterial DNA in serum and synovial fluid in refractory rheumatoid arthritis patients. J Clin Periodontol 36:1004–1010. doi: 10.1111/j.1600-051X.2009.01496.x. [DOI] [PubMed] [Google Scholar]
  • 5.Robert AA, Rass MD, Al-Zoman KH, Al-Sohail AM, Alsuwyed AS, Ciancio SG, Al-Mubarak SA. 2010. Determinants of periodontopathogens in microbiological monitoring of diabetic patients with periodontitis. Saudi Med J 31:1044–1048. [PubMed] [Google Scholar]
  • 6.Rodrigues PH, Reyes L, Chadda AS, Bélanger M, Wallet SM, Akin D, Dunn W Jr, Progulske-Fox A. 2012. Porphyromonas gingivalis strain specific interactions with human coronary artery endothelial cells: a comparative study. PLoS One 7:e52606. doi: 10.1371/journal.pone.0052606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Laine ML, van Winkelhoff AJ. 1998. Virulence of six capsular serotypes of Porphyromonas gingivalis in a mouse model. Oral Microbiol Immunol 13:322–325. doi: 10.1111/j.1399-302X.1998.tb00714.x. [DOI] [PubMed] [Google Scholar]
  • 8.Dorn BR, Burks JN, Seifert KN, Progulske-Fox A. 2000. Invasion of endothelial and epithelial cells by strains of Porphyromonas gingivalis. FEMS Microbiol Lett 187:139–144. doi: 10.1111/j.1574-6968.2000.tb09150.x. [DOI] [PubMed] [Google Scholar]
  • 9.Grenier D, Mayrand D. 1987. Selected characteristics of pathogenic and nonpathogenic strains of Bacteroides gingivalis. J Clin Microbiol 25:738–740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Nelson KE, Fleischmann RD, DeBoy RT, Paulsen IT, Fouts DE, Eisen JA, Daugherty SC, Dodson RJ, Durkin AS, Gwinn M, Haft DH, Kolonay JF, Nelson WC, Mason T, Tallon L, Gray J, Granger D, Tettelin H, Dong H, Galvin JL, Duncan MJ, Dewhirst FE, Fraser CM. 2003. Complete genome sequence of the oral pathogenic bacterium Porphyromonas gingivalis strain W83. J Bacteriol 185:5591–5601. doi: 10.1128/JB.185.18.5591-5601.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Naito M, Hirakawa H, Yamashita A, Ohara N, Shoji M, Yukitake H, Nakayama K, Toh H, Yoshimura F, Kuhara S, Hattori M, Hayashi T, Nakayama K. 2008. Determination of the genome sequence of Porphyromonas gingivalis strain ATCC 33277 and genomic comparison with strain W83 revealed extensive genome rearrangements in P. gingivalis. DNA Res 15:215–225. doi: 10.1093/dnares/dsn013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Watanabe T, Maruyama F, Nozawa T, Aoki A, Okano S, Shibata Y, Oshima K, Kurokawa K, Hattori M, Nakagawa I, Abiko Y. 2011. Complete genome sequence of the bacterium Porphyromonas gingivalis TDC60, which causes periodontal disease. J Bacteriol 193:4259–4260. doi: 10.1128/JB.05269-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Siddiqui H, Yoder-Himes DR, Mizgalska D, Nguyen KA, Potempa J, Olsen I. 2014. Genome sequence of Porphyromonas gingivalis strain HG66 (DSM 28984). Genome Announc 2(5):e00947-14. doi: 10.1128/genomeA.00947-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Liu D, Zhou Y, Naito M, Yumoto H, Li Q, Miyake Y, Liang J, Shu R. 2014. Draft genome sequence of Porphyromonas gingivalis strain SJD2, isolated from the periodontal pocket of a patient with periodontitis in China. Genome Announc 2(1):e01091-13. doi: 10.1128/genomeA.01091-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Genco CA, Cutler CW, Kapczynski D, Maloney K, Arnold RR. 1991. A novel mouse model to study the virulence of and host response to Porphyromonas (Bacteroides) gingivalis. Infect Immun 59:1255–1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Aduse-Opoku J, Slaney JM, Hashim A, Gallagher A, Gallagher RP, Rangarajan M, Boutaga K, Laine ML, Van Winkelhoff AJ, Curtis MA. 2006. Identification and characterization of the capsular polysaccharide (K-antigen) locus of Porphyromonas gingivalis. Infect Immun 74:449–460. doi: 10.1128/IAI.74.1.449-460.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Amano A. 2010. Bacterial adhesins to host components in periodontitis. Periodontol 2000 52:12–37. doi: 10.1111/j.1600-0757.2009.00307.x. [DOI] [PubMed] [Google Scholar]
  • 18.Bélanger M, Reyes L, von Deneen K, Reinhard MK, Progulske-Fox A, Brown MB. 2008. Colonization of maternal and fetal tissues by Porphyromonas gingivalis is strain-dependent in a rodent animal model. Am J Obstet Gynecol 199:86.e1–86.e7. doi: 10.1016/j.ajog.2007.11.067. [DOI] [PubMed] [Google Scholar]
  • 19.Bélanger M, Rodrigues P, Progulske-Fox A. 2007. Genetic manipulation of Porphyromonas gingivalis. Curr Protoc Microbiol 13:Unit13C.12. doi: 10.1002/9780471729259.mc13c02s05. [DOI] [PubMed] [Google Scholar]
  • 20.Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380. doi: 10.1038/nature03959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829. doi: 10.1101/gr.074492.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Ewing B, Green P. 1998. Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res 8:186–194. doi: 10.1101/gr.8.3.186. [DOI] [PubMed] [Google Scholar]
  • 23.Ewing B, Hillier L, Wendl MC, Green P. 1998. Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res 8:175–185. doi: 10.1101/gr.8.3.175. [DOI] [PubMed] [Google Scholar]
  • 24.Gordon D, Abajian C, Green P. 1998. Consed: a graphical tool for sequence finishing. Genome Res 8:195–202. doi: 10.1101/gr.8.3.195. [DOI] [PubMed] [Google Scholar]
  • 25.Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA. 2008. The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386. doi: 10.1186/1471-2105-9-386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob B, Huang J, Williams P, Huntemann M, Anderson I, Mavromatis K, Ivanova NN, Kyrpides NC. 2012. IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 40:D115–D122. doi: 10.1093/nar/gkr1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Pati A, Ivanova NN, Mikhailova N, Ovchinnikova G, Hooper SD, Lykidis A, Kyrpides NC. 2010. GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes. Nat Methods 7:455–457. doi: 10.1038/nmeth.1457. [DOI] [PubMed] [Google Scholar]

Articles from Genome Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES