Abstract
In a study of juvenile hormone-regulated gene expression, we isolated an anonymous cDNA representing a message that was strongly suppressed by juvenile hormone in the fat body of the cockroach Blaberus discoidalis. The protein deduced from the cDNA sequence showed compelling resemblance in sequence to the transferrins, a superfamily of internally duplicated, 80-kDa iron-binding/transport proteins characterized from several vertebrates and, to date, one insect (the tobacco hornworm, Manduca sexta). We isolated a 78-kDa protein from cockroach hemolymph, verified its congruence with the cloned cDNA, and found that it did bind iron. The cockroach protein is a member of the transferrin superfamily based on several features, including 32-46% amino acid positional identity with transferrins whose sequences are known, internal homology, positioning of cysteine residues, and iron binding. Whereas the previously characterized insect transferrin binds one atom of iron per protein molecule, B. discoidalis transferrin binds two iron atoms as do the vertebrate transferrins. The diferric property of cockroach transferrin is consistent with presence of two sets of residues positioned appropriately for iron binding. Juvenile hormone suppressed transferrin mRNA levels drastically in the adult female cockroach.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aisen P., Leibman A., Zweier J. Stoichiometric and site characteristics of the binding of iron to human transferrin. J Biol Chem. 1978 Mar 25;253(6):1930–1937. [PubMed] [Google Scholar]
- Alexander L. J., Levine W. B., Teng C. T., Beattie C. W. Cloning and sequencing of the porcine lactoferrin cDNA. Anim Genet. 1992;23(3):251–256. doi: 10.1111/j.1365-2052.1992.tb00137.x. [DOI] [PubMed] [Google Scholar]
- Anderson B. F., Baker H. M., Norris G. E., Rice D. W., Baker E. N. Structure of human lactoferrin: crystallographic structure analysis and refinement at 2.8 A resolution. J Mol Biol. 1989 Oct 20;209(4):711–734. doi: 10.1016/0022-2836(89)90602-5. [DOI] [PubMed] [Google Scholar]
- Bailey J. M., Davidson N. Methylmercury as a reversible denaturing agent for agarose gel electrophoresis. Anal Biochem. 1976 Jan;70(1):75–85. doi: 10.1016/s0003-2697(76)80049-8. [DOI] [PubMed] [Google Scholar]
- Bailey S., Evans R. W., Garratt R. C., Gorinsky B., Hasnain S., Horsburgh C., Jhoti H., Lindley P. F., Mydin A., Sarra R. Molecular structure of serum transferrin at 3.3-A resolution. Biochemistry. 1988 Jul 26;27(15):5804–5812. doi: 10.1021/bi00415a061. [DOI] [PubMed] [Google Scholar]
- Baker E. N., Baker H. M., Smith C. A., Stebbins M. R., Kahn M., Hellström K. E., Hellström I. Human melanotransferrin (p97) has only one functional iron-binding site. FEBS Lett. 1992 Feb 24;298(2-3):215–218. doi: 10.1016/0014-5793(92)80060-t. [DOI] [PubMed] [Google Scholar]
- Baldwin G. S., Weinstock J. Nucleotide sequence of porcine liver transferrin. Nucleic Acids Res. 1988 Sep 12;16(17):8720–8720. doi: 10.1093/nar/16.17.8720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Banfield D. K., Chow B. K., Funk W. D., Robertson K. A., Umelas T. M., Woodworth R. C., MacGillivray R. T. The nucleotide sequence of rabbit liver transferrin cDNA. Biochim Biophys Acta. 1991 Jun 13;1089(2):262–265. doi: 10.1016/0167-4781(91)90021-d. [DOI] [PubMed] [Google Scholar]
- Bartfeld N. S., Law J. H. Isolation and molecular cloning of transferrin from the tobacco hornworm, Manduca sexta. Sequence similarity to the vertebrate transferrins. J Biol Chem. 1990 Dec 15;265(35):21684–21691. [PubMed] [Google Scholar]
- Feng D. F., Doolittle R. F. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol. 1987;25(4):351–360. doi: 10.1007/BF02603120. [DOI] [PubMed] [Google Scholar]
- Hori H., Osawa S. Origin and evolution of organisms as deduced from 5S ribosomal RNA sequences. Mol Biol Evol. 1987 Sep;4(5):445–472. doi: 10.1093/oxfordjournals.molbev.a040455. [DOI] [PubMed] [Google Scholar]
- Huebers H. A., Finch C. A. The physiology of transferrin and transferrin receptors. Physiol Rev. 1987 Apr;67(2):520–582. doi: 10.1152/physrev.1987.67.2.520. [DOI] [PubMed] [Google Scholar]
- Huebers H. A., Huebers E., Finch C. A., Webb B. A., Truman J. W., Riddiford L. M., Martin A. W., Massover W. H. Iron binding proteins and their roles in the tobacco hornworm, Manduca sexta (L.). J Comp Physiol B. 1988;158(3):291–300. doi: 10.1007/BF00695327. [DOI] [PubMed] [Google Scholar]
- Jeltsch J. M., Chambon P. The complete nucleotide sequence of the chicken ovotransferrin mRNA. Eur J Biochem. 1982 Feb;122(2):291–295. doi: 10.1111/j.1432-1033.1982.tb05879.x. [DOI] [PubMed] [Google Scholar]
- MacGillivray R. T., Mendez E., Shewale J. G., Sinha S. K., Lineback-Zins J., Brew K. The primary structure of human serum transferrin. The structures of seven cyanogen bromide fragments and the assembly of the complete structure. J Biol Chem. 1983 Mar 25;258(6):3543–3553. [PubMed] [Google Scholar]
- Martin A. W., Huebers E., Huebers H., Webb J., Finch C. A. A mono-sited transferrin from a representative deuterostome: the ascidian Pyura stolonifera (subphylum Urochordata). Blood. 1984 Nov;64(5):1047–1052. [PubMed] [Google Scholar]
- Mazurier J., Aubert J. P., Loucheux-Lefevre M. H. Comparative circular dichroism studies of iron-free and iron-saturated forms of human serotransferrin and lactortransferrin. FEBS Lett. 1976 Jul 15;66(2):238–242. doi: 10.1016/0014-5793(76)80512-1. [DOI] [PubMed] [Google Scholar]
- Metz-Boutigue M. H., Jollès J., Mazurier J., Schoentgen F., Legrand D., Spik G., Montreuil J., Jollès P. Human lactotransferrin: amino acid sequence and structural comparisons with other transferrins. Eur J Biochem. 1984 Dec 17;145(3):659–676. doi: 10.1111/j.1432-1033.1984.tb08607.x. [DOI] [PubMed] [Google Scholar]
- Moskaitis J. E., Pastori R. L., Schoenberg D. R. The nucleotide sequence of Xenopus laevis transferrin mRNA. Nucleic Acids Res. 1990 Oct 25;18(20):6135–6135. doi: 10.1093/nar/18.20.6135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Needleman S. B., Wunsch C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. doi: 10.1016/0022-2836(70)90057-4. [DOI] [PubMed] [Google Scholar]
- Pentecost B. T., Teng C. T. Lactotransferrin is the major estrogen inducible protein of mouse uterine secretions. J Biol Chem. 1987 Jul 25;262(21):10134–10139. [PubMed] [Google Scholar]
- Puissant C., Houdebine L. M. An improvement of the single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Biotechniques. 1990 Feb;8(2):148–149. [PubMed] [Google Scholar]
- Rose T. M., Plowman G. D., Teplow D. B., Dreyer W. J., Hellström K. E., Brown J. P. Primary structure of the human melanoma-associated antigen p97 (melanotransferrin) deduced from the mRNA sequence. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1261–1265. doi: 10.1073/pnas.83.5.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schaeffer E., Lucero M. A., Jeltsch J. M., Py M. C., Levin M. J., Chambon P., Cohen G. N., Zakin M. M. Complete structure of the human transferrin gene. Comparison with analogous chicken gene and human pseudogene. Gene. 1987;56(1):109–116. doi: 10.1016/0378-1119(87)90163-6. [DOI] [PubMed] [Google Scholar]
- von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]