Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 2015 Aug 31;112(38):E5371–E5375. doi: 10.1073/pnas.1516042112

Correction for Hobley et al., BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm

PMCID: PMC4586836  PMID: 26324938

MICROBIOLOGY Correction for “BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm,” by Laura Hobley, Adam Ostrowski, Francesco V. Rao, Keith M. Bromley, Michael Porter, Alan R. Prescott, Cait E. MacPhee, Daan M. F. van Aalten, and Nicola R. Stanley-Wall, which appeared in issue 33, August 13, 2013, of Proc Natl Acad Sci USA (110:13600–13605; first published July 31, 2013; 10.1073/pnas.1306390110).

The authors wish to note the following: “Ongoing investigations into mechanism of BslA self-assembly led us to question the validity of the in vivo phenotype exhibited by the L77D BslA variant protein. We uncovered that the strain thought to carry a mutation of residue leucine 77 to aspartate in fact contained the wild-type bslA coding region. Investigations revealed that the original heterologous bslA coding region had not been sequenced upon introduction to the Bacillus subtilis chromosome and therefore it was not noticed that the desired mutation was lacking. Thus, we constructed a strain carrying the coding region with the L77D mutation and have established that the BslA L77D is unable to reinstate wild type biofilm formation to the bslA mutant; meaning that the colony formed remained wetting. (See corrected Fig. 6 and corrected Table S2.) Consistent with these findings, the BslA L77D protein was localized within pellicle biofilms to media fraction (see Fig. S5C). These findings are entirely consistent with our model of BslA function and do not impact the validity of our original conclusions.” The corrected Fig. 6, its legend, corrected Fig. S5, its legend, corrected Table S2, and corrected Table S3 appear below. The SI has been corrected online.

Fig. 6.

Fig. 6.

In vivo biofilm analysis of the hydrophobic cap of BslA. (A) Complex colony morphologies of strains containing leucine/isoleucine-to-lysine mutations in the β-sheets CAP2 and CAP3 alongside wild-type (NCIB3610), bslA (NRS2097), and bslA+ (NRS2299) controls. (B) Pellicle morphology of the CAP2 and CAP3 mutants shown in A. (C) Sessile water-drop analysis of colony hydrophobicity of CAP2 and CAP3 mutants. Colonies were grown as for morphology analysis and 5-µL water drops placed on top. (D) Complex colony morphologies of strains containing mutations in the central CAP1 β-sheet. (E) Pellicle morphology of the CAP1 mutants shown in D. (F) Water-droplet analysis of colony hydrophobicity of CAP1 mutants. Table S3 gives strain details.

Table S2.

In vivo characterization of the hydrophobic cap

Mutation Colony morphology Pellicle morphology Water drop assay (mean contact angle ± SE)
Wild-type Wild-type Wild-type Nonwetting 128.9° ± 1.3
bslA Null Null Wetting 24.7° ± 2.7
bslA+ Wild-type Wild-type Nonwetting 127.2° ± 3.4
L76
 I Wild-type Wild-type Nonwetting 124.8° ± 2.2
 K Intermediate (almost null) Null Nonwetting 120.2° ± 13.1
 D Intermediate Intermediate Nonwetting 127.6° ± 10.7
L77
 I Wild-type Wild-type Nonwetting 118.0° ± 8.3
 K Null Null Wetting 49.6° ± 4.5
 D Null Null Wetting 40° ± 0.4
L79
 I Wild-type Wild-type Nonwetting 122.1° ± 7.4
 K Null Null Wetting 23.7° ± 5.0
 D Null Null Wetting 18.5° ± 7.4
L119K Wild-type Wild-type Nonwetting 115.1° ± 8.0
L121K Intermediate Null Nonwetting 128.5° ± 1.0
L123K Intermediate (almost null) Null Nonwetting 130.5° ± 2.0
L124K Intermediate Wild-type Nonwetting 133.4° ± 0.8
L153K Intermediate Null Nonwetting 123.9° ± 1.7
I155K Intermediate Null Nonwetting 128.9° ± 1.9

Fig. S5.

Fig. S5.

Protein production and stability of in vivo BslA hydrophobic cap mutants. Western blot analysis using a BslA-specific primary antibody of protein extracted from whole complex colonies of (A) CAP2 and CAP3 mutants (as shown in Fig. 6A) and (B) CAP1 mutants (Fig. 6D). Colonies were grown for 48 h at 30 °C before extraction. (C) Pellicles of CAP1 mutant strains, grown for 18 h at 37 °C, were separated into pellicle (P, containing both cells and the biofilm matrix) and media (M) fractions. Western blots were probed with a BslA-specific primary antibody. Pellicles with wild-type morphology show that most BslA protein is found within the P fraction, whereas those with altered pellicle morphology have BslA protein in both the P and M fractions. When BslA is present in the media a second, lower-molecular-weight degradation product appears.

Table S3.

Full list of strains, plasmids, and primers used in this study

Strain, plasmid, or primer Relevant genotype/description Source/construction*,
Strain
 MC1061 E. coli F'lacIQ lacZM15 Tn10 (tet) E. coli Genetic Stock Centre
 BL21 (DE3) F– ompT hsdSB(rB, mB) gal dcm (DE3) 1
 B834 (DE3) F ompT hsdSB(rB mB) gal dcm met (DE3) Novagen
 NCIB3610 prototroph BGSC
 168 trpC2 BGSC
 JH642 trpC2 pheA1 2
 NRS1471 JH642 sacA::Phy-spank-gfpmut2 (kan) 3
 NRS1473 3610 sacA::Phy-spank-gfpmut2 (kan) SPP1 NRS1471 → 3610
 NRS2097 3610 bslA::cat 4
 NRS2289 3610 sacA::PbslA-gfpmut2 (kan) 5
 NRS2299 3610 bslA::cat amyE::Phy-spank-bslA-lacI (spc) 4
 NRS2394 3610 sacA::PtapA-gfpmut2 (kan) 6
 NRS3790 3610 bslA::cat amyE::Phy-spank-bslA-lacI (spc) sacA::Phy-spank-gfpmut2 (kan) SPP1 NRS1471 → NRS2299
 NRS3812 3610 bslA::cat sacA::Phy-spank-gfpmut2 (kan) SPP1 NRS1471 → NRS2097
 NRS3820 3610 bslA::cat amyE::Phy-spank-bslAL76I-lacI (spc) SPP1 NRS3969 → NRS2097
 NRS3969 168 amyE::Phy-spank-bslAL76I-lacI (spc) pNW1104 →168
 NRS4156 168 amyE::Phy-spank-bslAL76D-lacI (spc) pNW1143 →168
 NRS4158 168 amyE::Phy-spank-bslAL76K-lacI (spc) pNW1144 →168
 NRS4171 3610 bslA::cat amyE::Phy-spank-bslAL76D-lacI (spc) SPP1 NRS4156 → NRS2097
 NRS4175 3610 bslA::cat amyE::Phy-spank-bslAL76K-lacI (spc) SPP1 NRS4158 → NRS2097
 NRS4437 168 amyE::Phy-spank-bslAL79I-lacI (spc) pNW1158 →168
 NRS4439 168 amyE::Phy-spank-bslAL79D-lacI (spc) pNW1157 →168
 NRS4442 3610 bslA::cat amyE::Phy-spank-bslAL79I-lacI (spc) SPP1 NRS4437 → NRS2097
 NRS4446 3610 bslA::cat amyE::Phy-spank-bslAL79D-lacI (spc) SPP1 NRS4439 → NRS2097
 NRS4475 168 amyE::Phy-spank-bslAL79K-lacI (spc) pNW1165 →168
 NRS4481 3610 bslA::cat amyE::Phy-spank-bslAL79K-lacI (spc) SPP1 NRS4475 → NRS2097
 NRS4515 168 amyE::Phy-spank-bslAL98M-lacI (spc) pNW1178 →168
 NRS4516 168 amyE::Phy-spank-bslAL77I-lacI (spc) pNW1179 →168
 NRS4517 168 amyE::Phy-spank-bslAL77K-lacI (spc) pNW1180 →168
 NRS5065 168 amyE::Phy-spank-bslAL77D-lacI (spc) pNW1461 →168
 NRS4520 3610 bslA::cat amyE::Phy-spank-bslAL98M-lacI (spc) SPP1 NRS4515 → NRS2097
 NRS4522 3610 bslA::cat amyE::Phy-spank-bslAL77I-lacI (spc) SPP1 NRS4516 → NRS2097
 NRS4524 3610 bslA::cat amyE::Phy-spank-bslAL77K-lacI (spc) SPP1 NRS4517 → NRS2097
 NRS5071 3610 bslA::cat amyE::Phy-spank-bslAL77D-lacI (spc) SPP1 NRS5065 → NRS2097
 NRS4552 168 amyE::Phy-spank-bslAL119K-lacI (spc) pNW1190 →168
 NRS4553 168 amyE::Phy-spank-bslAL121K-lacI (spc) pNW1191 →168
 NRS4554 168 amyE::Phy-spank-bslAL123K-lacI (spc) pNW1192 →168
 NRS4555 168 amyE::Phy-spank-bslAL124K-lacI (spc) pNW1193 →168
 NRS4556 168 amyE::Phy-spank-bslAL153K-lacI (spc) pNW1194 →168
 NRS4557 168 amyE::Phy-spank-bslAI155K-lacI (spc) pNW1195 →168
 NRS4559 3610 bslA::cat amyE::Phy-spank-bslAL119K-lacI (spc) SPP1 NRS4552 → NRS2097
 NRS4561 3610 bslA::cat amyE::Phy-spank-bslAL121k-lacI (spc) SPP1 NRS4553 → NRS2097
 NRS4563 3610 bslA::cat amyE::Phy-spank-bslAL123K-lacI (spc) SPP1 NRS4554 → NRS2097
 NRS4565 3610 bslA::cat amyE::Phy-spank-bslAL124K-lacI (spc) SPP1 NRS4555 → NRS2097
 NRS4567 3610 bslA::cat amyE::Phy-spank–bslAL153K-lacI (spc) SPP1 NRS4556 → NRS2097
 NRS4569 3610 bslA::cat amyE::Phy-spank-bslAI155K-lacI (spc) SPP1 NRS4557 → NRS2097
Plasmid
 pUC19 High-copy-number cloning vector 7
 pDR111 B. subtilis integration vector for IPTG-induced expression 8
 pGEX-6P-1 Vector for overexpression of GST-fused proteins GE Healthcare
 pNW518 pDR111-bslA 4
 pNW690 pUC19-bslA This work
 pNW693 pUC19-bslAL76I This work
 pNW1104 pDR111-bslAL76I This work
 pNW1128 pGEX-6P-1-TEV-bslA42–181 This work
 pNW1129 pUC19-bslAL76D This work
 pNW1136 pUC19-bslAL76K This work
 pNW1143 pDR111-bslAL76D This work
 pNW1144 pDR111-bslAL76K This work
 pNW1149 pUC19-bslAL79K This work
 pNW1150 pUC19-bslAL79D This work
 pNW1151 pUC19-bslAL79I This work
 pNW1157 pDR111-bslAL79D This work
 pNW1158 pDR111-bslAL79I This work
 pNW1160 pGEX-6P-1-bslA48–172, L98M This work
 pNW1162 pGEX-6P-1-TEV-bslA42–181, L79K This work
 pNW1165 pDR111-bslAL79K This work
 pNW1174 pUC19-bslAL98M This work
 pNW1175 pUC19-bslAL77I This work
 pNW1176 pUC19-bslAL77K This work
 pNW1177 pUC19-bslAL77D This work
 pNW1178 pDR111-bslAL98M This work
 pNW1179 pDR111-bslAL77I This work
 pNW1180 pDR111-bslAL77K This work
 pNW1461 pDR111-bslAL77D This work
 pNW1182 pUC19-bslAL119K This work
 pNW1183 pUC19-bslAL121K This work
 pNW1184 pUC19-bslAL123K This work
 pNW1185 pUC19-bslAL124K This work
 pNW1186 pUC19-bslAL153K This work
 pNW1187 pUC19-bslAI155K This work
 pNW1188 pGEX-6-P-TEV-bslA42–181, L76K This work
 pNW1189 pGEX-6-P-TEV-bslA42–181, L77K This work
 pNW1190 pDR111-bslAL119K This work
 pNW1191 pDR111-bslAL121K This work
 pNW1192 pDR111-bslAL123K This work
 pNW1193 pDR111-bslAL124K This work
 pNW1194 pDR111-bslAL153K This work
 pNW1195 pDR111-bslAI155K This work
 pNW1196 pGEX-6P-1-bslA48–172 This work
Primer Sequence 5′ – 3′ Use
 NSW1337 TACCGTCCAAACACGATTCTCAGCCTTGGCG L76I mutagenesis
 NSW1338 CGCCAAGGCTGAGAATCGTGTTTGGACGGTA L76I mutagenesis
 NSW1517 GCATCTCGAGTTATTAGTTGCAACCGCAAGGC bslA42–181 cloning
 NSW1537 CAGGGGCCCCTGGGATCCGAAAATTTATATTTTCAAATGAGAACACAGTCTACA bslA42–181 cloning
 NSW1539 TTACCGTCCAAACACGAAACTCAGCCTTGGCGTTA L76K mutagenesis
 NSW1540 TAACGCCAAGGCTGAGTTTCGTGTTTGGACGGTAA L76K mutagenesis
 NSW1541 TTACCGTCCAAACACGGATCTCAGCCTTGGCGTTA L76D mutagenesis
 NSW1542 TAACGCCAAGGCTGAGATCCGTGTTTGGACGGTAA L76D mutagenesis
 NSW1571 AAACACGCTTCTCAGCATTGGCGTTATGGAGTTTA L79I mutagenesis
 NSW1572 TAAACTCCATAACGCCAATGCTGAGAAGCGTGTTT L79I mutagenesis
 NSW1573 AAACACGCTTCTCAGCAAAGGCGTTATGGAGTTTA L79K mutagenesis
 NSW1574 TAAACTCCATAACGCCTTTGCTGAGAAGCGTGTTT L79K mutagenesis
 NSW1575 AAACACGCTTCTCAGCGATGGCGTTATGGAGTTTA L79D mutagenesis
 NSW1576 TAAACTCCATAACGCCATCGCTGAGAAGCGTGTTT L79D mutagenesis
 NSW1585 AAACACGAAAGACACAATGAACGGAAATGCCTTGC L98M mutagenesis
 NSW1586 GCAAGGCATTTCCGTTCATTGTGTCTTTCGTGTTT L98M mutagenesis
 NSW1591 CCGTCCAAACACGCTTATTAGCCTTGGCGTTATGG L77I mutagenesis
 NSW1592 CCATAACGCCAAGGCTAATAAGCGTGTTTGGACGG L77I mutagenesis
 NSW1593 CCGTCCAAACACGCTTAAAAGCCTTGGCGTTATGG L77K mutagenesis
 NSW1594 CCATAACGCCAAGGCTTTTAAGCGTGTTTGGACGG L77K mutagenesis
 NSW1595 CCGTCCAAACACGCTTGATAGCCTTGGCGTTATGG L77D mutagenesis
 NSW1596 CCATAACGCCAAGGCTATCAAGCGTGTTTGGACGG L77D mutagenesis
 NSW1597 AACAGTAAGAGTTCCTAAAGCACTTGATTTGTTAG L119K mutagenesis
 NSW1598 CTAACAAATCAAGTGCTTTAGGAACTCTTACTGTT L119K mutagenesis
 NSW1599 AAGAGTTCCTTTGGCAAAAGATTTGTTAGGAGCTG L121K mutagenesis
 NSW1704 CAGCTCCTAACAAATCTTTTGCCAAAGGAACTCTT L121K mutagenesis
 NSW1705 TCCTTTGGCACTTGATAAATTAGGAGCTGGCGAAT L123K mutagenesis
 NSW1706 ATTCGCCAGCTCCTAATTTATCAAGTGCCAAAGGA L123K mutagenesis
 NSW1707 TTTGGCACTTGATTTGAAAGGAGCTGGCGAATTCA L124K mutagenesis
 NSW1708 TGAATTCGCCAGCTCCTTTCAAATCAAGTGCCAAA L124K mutagenesis
 NSW1709 TGCGGAGAATAAATCAAAAAGCATCGGAAATAAAT L153K mutagenesis
 NSW1710 ATTTATTTCCGATGCTTTTTGATTTATTCTCCGCA L153K mutagenesis
 NSW1711 GAATAAATCATTAAGCAAAGGAAATAAATTTTACG I155K mutagenesis
 NSW1712 CGTAAAATTTATTTCCTTTGCTTAATGATTTATTC I155K mutagenesis
 NSW1713 CTGTTCCAGGGGCCCCTGGGATCCGCTTCATTGTTCGCAACAATCAC bslA48–172 cloning
 NSW1714 CTCGAGTTAGTTGCAACCGCATCATTAAGTGCTGCGCTTAGCCACGTC bslA48–172 cloning
*

BSGC represents the Bacillus genetic stock center.

The direction of strain construction is indicated with DNA or phage (SPP1) (→) recipient strain.


Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES