Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Feb 15;90(4):1541–1545. doi: 10.1073/pnas.90.4.1541

Human immunodeficiency virus coat protein gp120 inhibits the beta-adrenergic regulation of astroglial and microglial functions.

G Levi 1, M Patrizio 1, A Bernardo 1, T C Petrucci 1, C Agresti 1
PMCID: PMC45910  PMID: 8381971

Abstract

The goal of our study was to assess whether the human immunodeficiency virus (HIV) coat protein gp120 induces functional alterations in astrocytes and microglia, known for their reactivity and involvement in most types of brain pathology. We hypothesized that gp120-induced anomalies in glial functions, if present, might be mediated by changes in the levels of intracellular messengers important for signal transduction, such as cAMP. Acute (10 min) exposure of cultured rat cortical astrocytes or microglia to 100 pM gp120 caused only a modest (50-60%), though statistically significant, elevation in cAMP levels, which was antagonized by the beta-adrenergic receptor antagonist propranolol. More importantly, the protein substantially depressed [by 30% (astrocytes) and 50% (microglia)] the large increase in cAMP induced by the beta-adrenergic agonist isoproterenol (10 nM), without affecting that induced by direct adenylate cyclase stimulation by forskolin. Qualitatively similar results were obtained using a glial fibrillary acidic protein (GFAP)-positive human glioma cell line. The depression of the beta-adrenergic response had functional consequences in both astrocytes and microglia. In astrocytes we studied the phosphorylation of the two major cytoskeletal proteins, vimentin and GFAP, which is normally stimulated by isoproterenol, and found that gp120 partially (40-50%) prevented such stimulation. In microglial cells, which are the major producers of inflammatory cytokines within the brain, gp120 partially antagonized the negative beta-adrenergic modulation of lipopolysaccharide (10 ng/ml)-induced production of tumor necrosis factor alpha. Our results suggest that, by interfering with the beta-adrenergic regulation of astrocytes and microglia, gp120 may alter astroglial "reactivity" and upset the delicate cytokine network responsible for the defense against viral and opportunistic infections.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agresti C., Aloisi F., Levi G. Heterotypic and homotypic cellular interactions influencing the growth and differentiation of bipotential oligodendrocyte-type-2 astrocyte progenitors in culture. Dev Biol. 1991 Mar;144(1):16–29. doi: 10.1016/0012-1606(91)90474-h. [DOI] [PubMed] [Google Scholar]
  2. Aloisi F., Borsellino G., Samoggia P., Testa U., Chelucci C., Russo G., Peschle C., Levi G. Astrocyte cultures from human embryonic brain: characterization and modulation of surface molecules by inflammatory cytokines. J Neurosci Res. 1992 Aug;32(4):494–506. doi: 10.1002/jnr.490320405. [DOI] [PubMed] [Google Scholar]
  3. Aloisi F., Carè A., Borsellino G., Gallo P., Rosa S., Bassani A., Cabibbo A., Testa U., Levi G., Peschle C. Production of hemolymphopoietic cytokines (IL-6, IL-8, colony-stimulating factors) by normal human astrocytes in response to IL-1 beta and tumor necrosis factor-alpha. J Immunol. 1992 Oct 1;149(7):2358–2366. [PubMed] [Google Scholar]
  4. Benveniste E. N., Sparacio S. M., Bethea J. R. Tumor necrosis factor-alpha enhances interferon-gamma-mediated class II antigen expression on astrocytes. J Neuroimmunol. 1989 Dec;25(2-3):209–219. doi: 10.1016/0165-5728(89)90139-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brinkmann R., Schwinn A., Narayan O., Zink C., Kreth H. W., Roggendorf W., Dörries R., Schwender S., Imrich H., ter Meulen V. Human immunodeficiency virus infection in microglia: correlation between cells infected in the brain and cells cultured from infectious brain tissue. Ann Neurol. 1992 Apr;31(4):361–365. doi: 10.1002/ana.410310403. [DOI] [PubMed] [Google Scholar]
  6. Brosnan C. F., Selmaj K., Raine C. S. Hypothesis: a role for tumor necrosis factor in immune-mediated demyelination and its relevance to multiple sclerosis. J Neuroimmunol. 1988 Apr;18(1):87–94. doi: 10.1016/0165-5728(88)90137-3. [DOI] [PubMed] [Google Scholar]
  7. Dickson D. W., Mattiace L. A., Kure K., Hutchins K., Lyman W. D., Brosnan C. F. Microglia in human disease, with an emphasis on acquired immune deficiency syndrome. Lab Invest. 1991 Feb;64(2):135–156. [PubMed] [Google Scholar]
  8. Frei K., Malipiero U. V., Leist T. P., Zinkernagel R. M., Schwab M. E., Fontana A. On the cellular source and function of interleukin 6 produced in the central nervous system in viral diseases. Eur J Immunol. 1989 Apr;19(4):689–694. doi: 10.1002/eji.1830190418. [DOI] [PubMed] [Google Scholar]
  9. Frohman E. M., Vayuvegula B., Gupta S., van den Noort S. Norepinephrine inhibits gamma-interferon-induced major histocompatibility class II (Ia) antigen expression on cultured astrocytes via beta-2-adrenergic signal transduction mechanisms. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1292–1296. doi: 10.1073/pnas.85.4.1292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gallo P., Piccinno M. G., Krzalic L., Tavolato B. Tumor necrosis factor alpha (TNF alpha) and neurological diseases. Failure in detecting TNF alpha in the cerebrospinal fluid from patients with multiple sclerosis, AIDS dementia complex, and brain tumours. J Neuroimmunol. 1989 Jun;23(1):41–44. doi: 10.1016/0165-5728(89)90071-4. [DOI] [PubMed] [Google Scholar]
  11. Glowa J. R., Panlilio L. V., Brenneman D. E., Gozes I., Fridkin M., Hill J. M. Learning impairment following intracerebral administration of the HIV envelope protein gp120 or a VIP antagonist. Brain Res. 1992 Jan 20;570(1-2):49–53. doi: 10.1016/0006-8993(92)90562-n. [DOI] [PubMed] [Google Scholar]
  12. Grimaldi L. M., Martino G. V., Franciotta D. M., Brustia R., Castagna A., Pristerà R., Lazzarin A. Elevated alpha-tumor necrosis factor levels in spinal fluid from HIV-1-infected patients with central nervous system involvement. Ann Neurol. 1991 Jan;29(1):21–25. doi: 10.1002/ana.410290106. [DOI] [PubMed] [Google Scholar]
  13. Hetier E., Ayala J., Bousseau A., Prochiantz A. Modulation of interleukin-1 and tumor necrosis factor expression by beta-adrenergic agonists in mouse ameboid microglial cells. Exp Brain Res. 1991;86(2):407–413. doi: 10.1007/BF00228965. [DOI] [PubMed] [Google Scholar]
  14. Johnson R. T., McArthur J. C., Narayan O. The neurobiology of human immunodeficiency virus infections. FASEB J. 1988 Nov;2(14):2970–2981. doi: 10.1096/fasebj.2.14.2846395. [DOI] [PubMed] [Google Scholar]
  15. Jordan C. A., Watkins B. A., Kufta C., Dubois-Dalcq M. Infection of brain microglial cells by human immunodeficiency virus type 1 is CD4 dependent. J Virol. 1991 Feb;65(2):736–742. doi: 10.1128/jvi.65.2.736-742.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Katakami Y., Nakao Y., Koizumi T., Katakami N., Ogawa R., Fujita T. Regulation of tumour necrosis factor production by mouse peritoneal macrophages: the role of cellular cyclic AMP. Immunology. 1988 Aug;64(4):719–724. [PMC free article] [PubMed] [Google Scholar]
  17. Lipton S. A. Models of neuronal injury in AIDS: another role for the NMDA receptor? Trends Neurosci. 1992 Mar;15(3):75–79. doi: 10.1016/0166-2236(92)90013-x. [DOI] [PubMed] [Google Scholar]
  18. Madelian V., Martin D. L., Lepore R., Perrone M., Shain W. Beta-receptor-stimulated and cyclic adenosine 3',5'-monophosphate-mediated taurine release from LRM55 glial cells. J Neurosci. 1985 Dec;5(12):3154–3160. doi: 10.1523/JNEUROSCI.05-12-03154.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Male D., Pyrce G., Hughes C., Lantos P. Lymphocyte migration into brain modelled in vitro: control by lymphocyte activation, cytokines, and antigen. Cell Immunol. 1990 Apr 15;127(1):1–11. doi: 10.1016/0008-8749(90)90109-5. [DOI] [PubMed] [Google Scholar]
  20. McCarthy K. D., Prime J., Harmon T., Pollenz R. Receptor-mediated phosphorylation of astroglial intermediate filament proteins in cultured astroglia. J Neurochem. 1985 Mar;44(3):723–730. doi: 10.1111/j.1471-4159.1985.tb12875.x. [DOI] [PubMed] [Google Scholar]
  21. Merrill J. E., Chen I. S. HIV-1, macrophages, glial cells, and cytokines in AIDS nervous system disease. FASEB J. 1991 Jul;5(10):2391–2397. doi: 10.1096/fasebj.5.10.2065887. [DOI] [PubMed] [Google Scholar]
  22. Merrill J. E., Koyanagi Y., Zack J., Thomas L., Martin F., Chen I. S. Induction of interleukin-1 and tumor necrosis factor alpha in brain cultures by human immunodeficiency virus type 1. J Virol. 1992 Apr;66(4):2217–2225. doi: 10.1128/jvi.66.4.2217-2225.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  24. Northam W. J., Bedoy C. A., Mobley P. L. Pharmacological identification of the alpha-adrenergic receptor type which inhibits the beta-adrenergic activated adenylate cyclase system in cultured astrocytes. Glia. 1989;2(2):129–133. doi: 10.1002/glia.440020209. [DOI] [PubMed] [Google Scholar]
  25. Radojcic T., Baird S., Darko D., Smith D., Bulloch K. Changes in beta-adrenergic receptor distribution on immunocytes during differentiation: an analysis of T cells and macrophages. J Neurosci Res. 1991 Oct;30(2):328–335. doi: 10.1002/jnr.490300208. [DOI] [PubMed] [Google Scholar]
  26. Schwartz J. P., Mishler K. Beta-adrenergic receptor regulation, through cyclic AMP, of nerve growth factor expression in rat cortical and cerebellar astrocytes. Cell Mol Neurobiol. 1990 Sep;10(3):447–457. doi: 10.1007/BF00711186. [DOI] [PubMed] [Google Scholar]
  27. Selmaj K. W., Farooq M., Norton W. T., Raine C. S., Brosnan C. F. Proliferation of astrocytes in vitro in response to cytokines. A primary role for tumor necrosis factor. J Immunol. 1990 Jan 1;144(1):129–135. [PubMed] [Google Scholar]
  28. Sundar S. K., Cierpial M. A., Kamaraju L. S., Long S., Hsieh S., Lorenz C., Aaron M., Ritchie J. C., Weiss J. M. Human immunodeficiency virus glycoprotein (gp120) infused into rat brain induces interleukin 1 to elevate pituitary-adrenal activity and decrease peripheral cellular immune responses. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11246–11250. doi: 10.1073/pnas.88.24.11246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tweardy D. J., Glazer E. W., Mott P. L., Anderson K. Modulation by tumor necrosis factor-alpha of human astroglial cell production of granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF). J Neuroimmunol. 1991 Jun;32(3):269–278. doi: 10.1016/0165-5728(91)90197-f. [DOI] [PubMed] [Google Scholar]
  30. Tyor W. R., Glass J. D., Griffin J. W., Becker P. S., McArthur J. C., Bezman L., Griffin D. E. Cytokine expression in the brain during the acquired immunodeficiency syndrome. Ann Neurol. 1992 Apr;31(4):349–360. doi: 10.1002/ana.410310402. [DOI] [PubMed] [Google Scholar]
  31. Zoukos Y., Leonard J. P., Thomaides T., Thompson A. J., Cuzner M. L. beta-Adrenergic receptor density and function of peripheral blood mononuclear cells are increased in multiple sclerosis: a regulatory role for cortisol and interleukin-1. Ann Neurol. 1992 Jun;31(6):657–662. doi: 10.1002/ana.410310614. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES