Skip to main content
Thorax logoLink to Thorax
. 1982 Apr;37(4):275–279. doi: 10.1136/thx.37.4.275

Avoidance of reperfusion injury after cardioplegia.

A H Brown, G N Morritt, M Hammo
PMCID: PMC459297  PMID: 7112456

Abstract

Myocardial damage incurred by ischaemia appears during and seems to be accelerated by reperfusion, which restores recoverable cells and disrupts badly damaged ones. Vicious cycles of oedema, calcium accumulation, acidosis, oxygen toxicity, fibrillation and air and platelet emboli contribute to the reperfusion injury. The philosophy of cool low-pressure reperfusion gradually restoring temperature and pressure to normal is here contrasted experimentally with that of immediate normothermic, normotensive perfusion after 90 minutes of ischaemic cool, cardioplegic arrest. The preparation was a canine heart which was treated according to the usual clinical protocol except that one group was reperfused at normal temperature and pressure, and the other group started reperfusion cool and at a low pressure and over the next 10 minutes pressure and temperature were restored to normal. Isovolumic ventricular function studies were done before ischaemia and after recovery and showed statistically significant differences between the groups in favour of the immediate restoration of normal temperature and pressure of perfusion. Contractile velocity and systolic pressure showed very highly significant (p = less than 0.005) differences, wall stress significant (p = less than 0.025) and compliance not significant differences between the groups. Reperfusion with optimal conditions may prevent "vicious cycle" changes in ischaemically damaged but recoverable myocardium. We have shown that a step in this direction is reperfusion with blood at normal temperature and pressure rather than initially at lowered temperature and pressure.

Full text

PDF
275

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baird R. J., Dutka F., Okumori M., de la Rocha A., Goldbach M. M., Hill T. J., MacGREGOR D. C. Surgical aspects of regional myocardial blood flow and myocardial pressure. J Thorac Cardiovasc Surg. 1975 Jan;69(1):17–29. [PubMed] [Google Scholar]
  2. Bing O. H., Brooks W. W., Messer J. V. Prolongation of tension on reoxygenation following myocardial hypoxia: a possible role for mitochondria in muscle relaxation. J Mol Cell Cardiol. 1976 Mar;8(3):205–215. doi: 10.1016/0022-2828(76)90037-7. [DOI] [PubMed] [Google Scholar]
  3. Brown A. H., Braimbridge M. V., Darracott S., Chayen J., Kasap H. An experimental evaluation of continuous normothermic, intermittent hypothermic, and intermittent normothermic coronary perfusion. Thorax. 1974 Jan;29(1):38–50. doi: 10.1136/thx.29.1.38. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown A. H., Braimbridge M. V., Niles N. R., Gerbode F., Aguilar M. J. The effect of excesively high pefusion pressures on the histology, histochemistry, birefringence, and function of the myocardium. J Thorac Cardiovasc Surg. 1969 Nov;58(5):655–663. [PubMed] [Google Scholar]
  5. Follette D., Fey K., Livesay J., Maloney J. V., Jr, Buckberg G. D. Studies on myocardial reperfusion injury. I. Favorable modification by adjusting reperfusate pH. Surgery. 1977 Jul;82(1):149–155. [PubMed] [Google Scholar]
  6. Follette D., Fey K., Mulder D., Maloney J. V., Jr, Buckberg G. D. Prolonged safe aortic clamping by combining membrane stabilization, multidose cardioplegia, and appropriate pH reperfusion. J Thorac Cardiovasc Surg. 1977 Nov;74(5):682–694. [PubMed] [Google Scholar]
  7. Hearse D. J. Reperfusion of the ischemic myocardium. J Mol Cell Cardiol. 1977 Aug;9(8):605–616. doi: 10.1016/s0022-2828(77)80357-x. [DOI] [PubMed] [Google Scholar]
  8. Hearse D. J., Stewart D. A., Braimbridge M. V. Inotropic agents and functional recovery from ischemic cardiac arrest. Thorac Cardiovasc Surg. 1979 Jun;27(3):153–159. doi: 10.1055/s-0028-1096236. [DOI] [PubMed] [Google Scholar]
  9. Henderson A. H., Brutsaert D. L. An analysis of the mechanical capabilities of heart muscle during hypoxia. Cardiovasc Res. 1973 Nov;7(6):763–776. doi: 10.1093/cvr/7.6.763. [DOI] [PubMed] [Google Scholar]
  10. Herdson P. B., Kaltenbach J. P., Jennings R. B. Fine structural and biochemical changes in dog myocardium during autolysis. Am J Pathol. 1969 Dec;57(3):539–557. [PMC free article] [PubMed] [Google Scholar]
  11. Howell B. J., Baumgardner F. W., Bondi K., Rahn H. Acid-base balance in cold-blooded vertebrates as a function of body temperature. Am J Physiol. 1970 Feb;218(2):600–606. doi: 10.1152/ajplegacy.1970.218.2.600. [DOI] [PubMed] [Google Scholar]
  12. JENNINGS R. B., SOMMERS H. M., SMYTH G. A., FLACK H. A., LINN H. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol. 1960 Jul;70:68–78. [PubMed] [Google Scholar]
  13. Kalmár P., Bleese N., Döring V., Gercken G., Kirsch U., Lierse W., Pokar H., Polonius M. J., Rodewald G. Induced ischemic cardiac arrest. Clinical and experimental results with magnesium-aspartate-procaine solution (Cardioplegin). J Cardiovasc Surg (Torino) 1975 Sep-Oct;16(5):470–475. [PubMed] [Google Scholar]
  14. Lehninger A. L. Mitochondria and calcium ion transport. Biochem J. 1970 Sep;119(2):129–138. doi: 10.1042/bj1190129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Maloney J. V., Jr, Nelson R. L. Myocardial preservation during cardiopulmonary bypass: an overview. J Thorac Cardiovasc Surg. 1975 Dec;70(6):1040–1050. [PubMed] [Google Scholar]
  16. Mulch J., Schaper J., Gottwik M., Hehrlein F. W. Recovery of the heart after normothermic ischemia. Part II: Myocardial function during postischemic reperfusion. Thorac Cardiovasc Surg. 1979 Jun;27(3):145–152. doi: 10.1055/s-0028-1096235. [DOI] [PubMed] [Google Scholar]
  17. Mulch J., Schaper J., Scheld H. H., Hehrlein F. W. Recovery of the heart after normothermic ischemia. Part I: Ultrastructural findings during postischemic reperfusion. Thorac Cardiovasc Surg. 1979 Feb;27(1):12–17. doi: 10.1055/s-0028-1096212. [DOI] [PubMed] [Google Scholar]
  18. Ruigrok T. J., Burgersdijk F. J., Zimmerman A. N. The calcium paradox: a reaffirmation. Eur J Cardiol. 1975 Jun;3(1):59–63. [PubMed] [Google Scholar]
  19. Swanson D. K., Dufek J. H., Barber T. A., Kahn D. R. Improving function of hearts preserved for 24 hours by controlling reperfusion. Transplantation. 1979 Dec;28(6):476–481. [PubMed] [Google Scholar]
  20. URSCHEL H. C., Jr, GREENBERG J. J. Differential hypothermic cardioplegia. Surg Forum. 1960;10:506–509. [PubMed] [Google Scholar]
  21. Williamson J. R., Schaffer S. W., Ford C., Safer B. Contribution of tissue acidosis to ischemic injury in the perfused rat heart. Circulation. 1976 Mar;53(3 Suppl):I3–14. [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES