Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Mar 1;90(5):1642–1646. doi: 10.1073/pnas.90.5.1642

Shared thematic elements in photochemical reaction centers.

J H Golbeck 1
PMCID: PMC45935  PMID: 8446577

Abstract

The structural, functional, and evolutionary relationships between photosystem II and the purple nonsulfur bacterial reaction center have been recognized for several years. These can be classified as "quinone type" (type II) photosystems because the terminal electron acceptor is a mobile quinone molecule. The analogous relationship between photosystem I and the green sulfur bacterial (and helicobacterial) reaction centers has only recently become clear. These can be classified as "iron-sulfur type" (type I) photosystems because the terminal electron acceptor consists of one or more bound iron-sulfur clusters. At a fundamental level, the quinone type and iron-sulfur type reaction centers share a common photochemical motif in the early process of charge separation, leading to the speculation that all photochemical reaction centers have a common evolutionary origin. This review summarizes the current state of knowledge in comparative reaction center biochemistry between prokaryotic bacteria, cyanobacteria, and green plants.

Full text

PDF
1642

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adman E. T., Sieker L. C., Jensen L. H. Structure of a bacterial ferredoxin. J Biol Chem. 1973 Jun 10;248(11):3987–3996. [PubMed] [Google Scholar]
  2. Armstrong F. A., George S. J., Cammack R., Hatchikian E. C., Thomson A. J. Electrochemical and spectroscopic characterization of the 7Fe form of ferredoxin III from Desulfovibrio africanus. Biochem J. 1989 Nov 15;264(1):265–273. doi: 10.1042/bj2640265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beanland T. J. Evolutionary relationships between "Q-type" photosynthetic reaction centres: hypothesis-testing using parsimony. J Theor Biol. 1990 Aug 23;145(4):535–545. doi: 10.1016/s0022-5193(05)80487-4. [DOI] [PubMed] [Google Scholar]
  4. Blankenship R. E. Origin and early evolution of photosynthesis. Photosynth Res. 1992;33:91–111. [PubMed] [Google Scholar]
  5. Büttner M., Xie D. L., Nelson H., Pinther W., Hauska G., Nelson N. Photosynthetic reaction center genes in green sulfur bacteria and in photosystem 1 are related. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8135–8139. doi: 10.1073/pnas.89.17.8135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cammack R. Effects of solvent on the properties of ferredoxins. Biochem Soc Trans. 1975;3(4):482–488. doi: 10.1042/bst0030482. [DOI] [PubMed] [Google Scholar]
  7. Cammack R., Ryan M. D., Stewart A. C. The EPR spectrum of iron--sulphur centre B in photosystem 1 of Phormidium laminosum. FEBS Lett. 1979 Nov 15;107(2):422–426. doi: 10.1016/0014-5793(79)80422-6. [DOI] [PubMed] [Google Scholar]
  8. Conover R. C., Kowal A. T., Fu W. G., Park J. B., Aono S., Adams M. W., Johnson M. K. Spectroscopic characterization of the novel iron-sulfur cluster in Pyrococcus furiosus ferredoxin. J Biol Chem. 1990 May 25;265(15):8533–8541. [PubMed] [Google Scholar]
  9. Evans M. C., Heathcote P. Effects of glycerol on the redox properties of the electron acceptor complex in spinach photosystem I particles. Biochim Biophys Acta. 1980 Mar 7;590(1):89–96. doi: 10.1016/0005-2728(80)90148-6. [DOI] [PubMed] [Google Scholar]
  10. Feiler U., Nitschke W., Michel H. Characterization of an improved reaction center preparation from the photosynthetic green sulfur bacterium Chlorobium containing the FeS centers FA and FB and a bound cytochrome subunit. Biochemistry. 1992 Mar 10;31(9):2608–2614. doi: 10.1021/bi00124a022. [DOI] [PubMed] [Google Scholar]
  11. Fitch W. M., Bruschi M. The evolution of prokaryotic ferredoxins--with a general method correcting for unobserved substitutions in less branched lineages. Mol Biol Evol. 1987 Jul;4(4):381–394. doi: 10.1093/oxfordjournals.molbev.a040452. [DOI] [PubMed] [Google Scholar]
  12. Fukuyama K., Nagahara Y., Tsukihara T., Katsube Y., Hase T., Matsubara H. Tertiary structure of Bacillus thermoproteolyticus [4Fe-4S] ferredoxin. Evolutionary implications for bacterial ferredoxins. J Mol Biol. 1988 Jan 5;199(1):183–193. doi: 10.1016/0022-2836(88)90388-9. [DOI] [PubMed] [Google Scholar]
  13. George S. J., Armstrong F. A., Hatchikian E. C., Thomson A. J. Electrochemical and spectroscopic characterization of the conversion of the 7Fe into the 8Fe form of ferredoxin III from Desulfovibrio africanus. Identification of a [4Fe-4S] cluster with one non-cysteine ligand. Biochem J. 1989 Nov 15;264(1):275–284. doi: 10.1042/bj2640275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Georgiadis M. M., Komiya H., Chakrabarti P., Woo D., Kornuc J. J., Rees D. C. Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii. Science. 1992 Sep 18;257(5077):1653–1659. doi: 10.1126/science.1529353. [DOI] [PubMed] [Google Scholar]
  15. Guigliarelli B., Guillaussier J., More C., Sétif P., Bottin H., Bertrand P. Structural organization of the iron-sulfur centers in Synechocystis 6803 photosystem I. EPR study of oriented thylakoid membranes and analysis of the magnetic interactions. J Biol Chem. 1993 Jan 15;268(2):900–908. [PubMed] [Google Scholar]
  16. Hausinger R. P., Howard J. B. Thiol reactivity of the nitrogenase Fe-protein from Azotobacter vinelandii. J Biol Chem. 1983 Nov 25;258(22):13486–13492. [PubMed] [Google Scholar]
  17. Kissinger C. R., Adman E. T., Sieker L. C., Jensen L. H., LeGall J. The crystal structure of the three-iron ferredoxin II from Desulfovibrio gigas. FEBS Lett. 1989 Feb 27;244(2):447–450. doi: 10.1016/0014-5793(89)80580-0. [DOI] [PubMed] [Google Scholar]
  18. Li N., Zhao J. D., Warren P. V., Warden J. T., Bryant D. A., Golbeck J. H. PsaD is required for the stable binding of PsaC to the photosystem I core protein of Synechococcus sp. PCC 6301. Biochemistry. 1991 Aug 6;30(31):7863–7872. doi: 10.1021/bi00245a028. [DOI] [PubMed] [Google Scholar]
  19. Miller M., Liu X., Snyder S. W., Thurnauer M. C., Biggins J. Photosynthetic electron-transfer reactions in the green sulfur bacterium Chlorobium vibrioforme: evidence for the functional involvement of iron-sulfur redox centers on the acceptor side of the reaction center. Biochemistry. 1992 May 5;31(17):4354–4363. doi: 10.1021/bi00132a028. [DOI] [PubMed] [Google Scholar]
  20. Moura J. J., Moura I., Kent T. A., Lipscomb J. D., Huynh B. H., LeGall J., Xavier A. V., Münck E. Interconversions of [3Fe-3S] and [4Fe-4S] clusters. Mössbauer and electron paramagnetic resonance studies of Desulfovibrio gigas ferredoxin II. J Biol Chem. 1982 Jun 10;257(11):6259–6267. [PubMed] [Google Scholar]
  21. Nitschke W., Feiler U., Rutherford A. W. Photosynthetic reaction center of green sulfur bacteria studied by EPR. Biochemistry. 1990 Apr 24;29(16):3834–3842. doi: 10.1021/bi00468a005. [DOI] [PubMed] [Google Scholar]
  22. Nitschke W., Rutherford A. W. Photosynthetic reaction centres: variations on a common structural theme? Trends Biochem Sci. 1991 Jul;16(7):241–245. doi: 10.1016/0968-0004(91)90095-d. [DOI] [PubMed] [Google Scholar]
  23. Nitschke W., Sétif P., Liebl U., Feiler U., Rutherford A. W. Reaction center photochemistry of Heliobacterium chlorum. Biochemistry. 1990 Dec 18;29(50):11079–11088. doi: 10.1021/bi00502a010. [DOI] [PubMed] [Google Scholar]
  24. Oh-oka H., Takahashi Y., Kuriyama K., Saeki K., Matsubara H. The protein responsible for center A/B in spinach photosystem I: isolation with iron-sulfur cluster(s) and complete sequence analysis. J Biochem. 1988 Jun;103(6):962–968. doi: 10.1093/oxfordjournals.jbchem.a122394. [DOI] [PubMed] [Google Scholar]
  25. Okkels J. S., Kjaer B., Hansson O., Svendsen I., Møller B. L., Scheller H. V. A membrane-bound monoheme cytochrome c551 of a novel type is the immediate electron donor to P840 of the Chlorobium vibrioforme photosynthetic reaction center complex. J Biol Chem. 1992 Oct 15;267(29):21139–21145. [PubMed] [Google Scholar]
  26. Otaka E., Ooi T. Examination of protein sequence homologies: IV. Twenty-seven bacterial ferredoxins. J Mol Evol. 1987;26(3):257–267. doi: 10.1007/BF02099857. [DOI] [PubMed] [Google Scholar]
  27. Park J. B., Fan C. L., Hoffman B. M., Adams M. W. Potentiometric and electron nuclear double resonance properties of the two spin forms of the [4Fe-4S]+ cluster in the novel ferredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus. J Biol Chem. 1991 Oct 15;266(29):19351–19356. [PubMed] [Google Scholar]
  28. Robbins A. H., Stout C. D. The structure of aconitase. Proteins. 1989;5(4):289–312. doi: 10.1002/prot.340050406. [DOI] [PubMed] [Google Scholar]
  29. Scheller H. V., Okkels J. S., Høj P. B., Svendsen I., Roepstorff P., Møller B. L. The primary structure of a 4.0-kDa photosystem I polypeptide encoded by the chloroplast psaI gene. J Biol Chem. 1989 Nov 5;264(31):18402–18406. [PubMed] [Google Scholar]
  30. Stout C. D. Refinement of the 7 Fe ferredoxin from Azotobacter vinelandii at 1.9 A resolution. J Mol Biol. 1989 Feb 5;205(3):545–555. doi: 10.1016/0022-2836(89)90225-8. [DOI] [PubMed] [Google Scholar]
  31. Thomson A. J., Breton J., Butt J. N., Hatchikian E. C., Armstrong F. A. Iron-sulphur clusters with labile metal ions. J Inorg Biochem. 1992 Aug 15;47(3-4):197–207. doi: 10.1016/0162-0134(92)84065-u. [DOI] [PubMed] [Google Scholar]
  32. Trost J. T., Blankenship R. E. Isolation of a photoactive photosynthetic reaction center-core antenna complex from Heliobacillus mobilis. Biochemistry. 1989 Dec 26;28(26):9898–9904. doi: 10.1021/bi00452a003. [DOI] [PubMed] [Google Scholar]
  33. Weeds A. G., McLachlan A. D. Structural homology of myosin alkali light chains, troponin C and carp calcium binding protein. Nature. 1974 Dec 20;252(5485):646–649. doi: 10.1038/252646a0. [DOI] [PubMed] [Google Scholar]
  34. Zhao J., Li N., Warren P. V., Golbeck J. H., Bryant D. A. Site-directed conversion of a cysteine to aspartate leads to the assembly of a [3Fe-4S] cluster in PsaC of photosystem I. The photoreduction of FA is independent of FB. Biochemistry. 1992 Jun 9;31(22):5093–5099. doi: 10.1021/bi00137a001. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES