Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Mar 1;90(5):1647–1651. doi: 10.1073/pnas.90.5.1647

Sequencing two DNA templates in five channels by digital compression.

M Nelson 1, Y Zhang 1, D L Steffens 1, R Grabherr 1, J L Van Etten 1
PMCID: PMC45936  PMID: 8446578

Abstract

By applying algebraic coding methods to the Sanger dideoxynucleotide procedure, DNA sequences of two templates can be determined simultaneously in only five reactions and data channels. A 5:2 data compression is accomplished by instantaneous source coding of nucleotide sequence pairs into one set of 5-bit block codes. A general algebraic expression, 2n-1 > or = 4f, describes conditions under which f DNA templates can be sequenced using n channels. Such compression sequencing is accurate and efficient, as demonstrated by manual 35S autoradiographic detection and automated on-line analysis using fluorescent-labeled primers. Symmetric 5:2 compression is especially useful when comparing two closely related sequences.

Full text

PDF
1647

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambrose B. J., Pless R. C. Analysis of DNA sequences using a single chemical cleavage procedure. Biochemistry. 1985 Oct 22;24(22):6194–6200. doi: 10.1021/bi00343a025. [DOI] [PubMed] [Google Scholar]
  2. Ansorge W., Zimmermann J., Schwager C., Stegemann J., Erfle H., Voss H. One label, one tube, Sanger DNA sequencing in one and two lanes on a gel. Nucleic Acids Res. 1990 Jun 11;18(11):3419–3420. doi: 10.1093/nar/18.11.3419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Biggin M. D., Gibson T. J., Hong G. F. Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc Natl Acad Sci U S A. 1983 Jul;80(13):3963–3965. doi: 10.1073/pnas.80.13.3963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. GELLERT M., LIPSETT M. N., DAVIES D. R. Helix formation by guanylic acid. Proc Natl Acad Sci U S A. 1962 Dec 15;48:2013–2018. doi: 10.1073/pnas.48.12.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hunkapiller T., Kaiser R. J., Koop B. F., Hood L. Large-scale and automated DNA sequence determination. Science. 1991 Oct 4;254(5028):59–67. doi: 10.1126/science.1925562. [DOI] [PubMed] [Google Scholar]
  6. Jacobson K. B., Arlinghaus H. F. Development of resonance ionization spectroscopy for DNA sequencing and genome mapping. Anal Chem. 1992 Mar 1;64(5):315A–328A. doi: 10.1021/ac00029a001. [DOI] [PubMed] [Google Scholar]
  7. Middendorf L. R., Bruce J. C., Bruce R. C., Eckles R. D., Grone D. L., Roemer S. C., Sloniker G. D., Steffens D. L., Sutter S. L., Brumbaugh J. A. Continuous, on-line DNA sequencing using a versatile infrared laser scanner/electrophoresis apparatus. Electrophoresis. 1992 Aug;13(8):487–494. doi: 10.1002/elps.11501301103. [DOI] [PubMed] [Google Scholar]
  8. Negri R., Costanzo G., Di Mauro E. A single-reaction method for DNA sequence determination. Anal Biochem. 1991 Sep 2;197(2):389–395. doi: 10.1016/0003-2697(91)90409-m. [DOI] [PubMed] [Google Scholar]
  9. Nelson M., Van Etten J. L., Grabherr R. DNA sequencing of four bases using three lanes. Nucleic Acids Res. 1992 Mar 25;20(6):1345–1348. doi: 10.1093/nar/20.6.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Prober J. M., Trainor G. L., Dam R. J., Hobbs F. W., Robertson C. W., Zagursky R. J., Cocuzza A. J., Jensen M. A., Baumeister K. A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science. 1987 Oct 16;238(4825):336–341. doi: 10.1126/science.2443975. [DOI] [PubMed] [Google Scholar]
  11. Reichert T. A., Wong A. K. Toward a molecular taxonomy. J Mol Evol. 1971;1(1):97–111. doi: 10.1007/BF01659397. [DOI] [PubMed] [Google Scholar]
  12. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Smith L. M., Fung S., Hunkapiller M. W., Hunkapiller T. J., Hood L. E. The synthesis of oligonucleotides containing an aliphatic amino group at the 5' terminus: synthesis of fluorescent DNA primers for use in DNA sequence analysis. Nucleic Acids Res. 1985 Apr 11;13(7):2399–2412. doi: 10.1093/nar/13.7.2399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tabor S., Richardson C. C. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4767–4771. doi: 10.1073/pnas.84.14.4767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wells R. D. Unusual DNA structures. J Biol Chem. 1988 Jan 25;263(3):1095–1098. [PubMed] [Google Scholar]
  16. Zhang Y., Nelson M., Van Etten J. L. A single amino acid change restores DNA cytosine methyltransferase activity in a cloned chlorella virus pseudogene. Nucleic Acids Res. 1992 Apr 11;20(7):1637–1642. doi: 10.1093/nar/20.7.1637. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES