Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Mar 1;90(5):1776–1780. doi: 10.1073/pnas.90.5.1776

Molten-globule conformation of Arc repressor monomers determined by high-pressure 1H NMR spectroscopy.

X Peng 1, J Jonas 1, J L Silva 1
PMCID: PMC45962  PMID: 8446590

Abstract

The conformation of the pressure-dissociated monomer of Arc repressor was characterized by 1H NMR spectroscopy. The NMR spectra of the monomer under pressure (up to 5.0 kbar; 1 bar = 100 kPa) are typical of a molten globule and they are considerably different from those of the native dimer and thermally denatured monomer. The two-dimensional nuclear Overhauser effect spectra suggest that the pressure-induced molten globule retains some secondary structure. The presence of nuclear Overhauser effects in the beta-sheet region in the dissociated state suggests that the intermonomer beta-sheet (residues 8-14) in the native dimer is replaced by an intramonomer beta-sheet. Changes in one-dimensional and two-dimensional NMR spectra prior to pressure dissociation were found and suggest the existence of a "predissociated" state.

Full text

PDF
1776

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baum J., Dobson C. M., Evans P. A., Hanley C. Characterization of a partly folded protein by NMR methods: studies on the molten globule state of guinea pig alpha-lactalbumin. Biochemistry. 1989 Jan 10;28(1):7–13. doi: 10.1021/bi00427a002. [DOI] [PubMed] [Google Scholar]
  2. Breg J. N., Boelens R., George A. V., Kaptein R. Sequence-specific 1H NMR assignment and secondary structure of the Arc repressor of bacteriophage P22, as determined by two-dimensional 1H NMR spectroscopy. Biochemistry. 1989 Dec 12;28(25):9826–9833. doi: 10.1021/bi00451a042. [DOI] [PubMed] [Google Scholar]
  3. Breg J. N., van Opheusden J. H., Burgering M. J., Boelens R., Kaptein R. Structure of Arc repressor in solution: evidence for a family of beta-sheet DNA-binding proteins. Nature. 1990 Aug 9;346(6284):586–589. doi: 10.1038/346586a0. [DOI] [PubMed] [Google Scholar]
  4. Creighton T. E. Protein folding. Biochem J. 1990 Aug 15;270(1):1–16. doi: 10.1042/bj2700001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Creighton T. E. Toward a better understanding of protein folding pathways. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5082–5086. doi: 10.1073/pnas.85.14.5082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dill K. A., Shortle D. Denatured states of proteins. Annu Rev Biochem. 1991;60:795–825. doi: 10.1146/annurev.bi.60.070191.004051. [DOI] [PubMed] [Google Scholar]
  7. Heremans K. High pressure effects on proteins and other biomolecules. Annu Rev Biophys Bioeng. 1982;11:1–21. doi: 10.1146/annurev.bb.11.060182.000245. [DOI] [PubMed] [Google Scholar]
  8. Jaenicke R. Folding and association of proteins. Prog Biophys Mol Biol. 1987;49(2-3):117–237. doi: 10.1016/0079-6107(87)90011-3. [DOI] [PubMed] [Google Scholar]
  9. Kim P. S., Baldwin R. L. Intermediates in the folding reactions of small proteins. Annu Rev Biochem. 1990;59:631–660. doi: 10.1146/annurev.bi.59.070190.003215. [DOI] [PubMed] [Google Scholar]
  10. Ohgushi M., Wada A. 'Molten-globule state': a compact form of globular proteins with mobile side-chains. FEBS Lett. 1983 Nov 28;164(1):21–24. doi: 10.1016/0014-5793(83)80010-6. [DOI] [PubMed] [Google Scholar]
  11. Roder H. Structural characterization of protein folding intermediates by proton magnetic resonance and hydrogen exchange. Methods Enzymol. 1989;176:446–473. doi: 10.1016/0076-6879(89)76024-9. [DOI] [PubMed] [Google Scholar]
  12. Samarasinghe S. D., Campbell D. M., Jonas A., Jonas J. High-resolution NMR study of the pressure-induced unfolding of lysozyme. Biochemistry. 1992 Sep 1;31(34):7773–7778. doi: 10.1021/bi00149a005. [DOI] [PubMed] [Google Scholar]
  13. Silva J. L., Silveira C. F., Correia Júnior A., Pontes L. Dissociation of a native dimer to a molten globule monomer. Effects of pressure and dilution on the association equilibrium of arc repressor. J Mol Biol. 1992 Jan 20;223(2):545–555. doi: 10.1016/0022-2836(92)90669-b. [DOI] [PubMed] [Google Scholar]
  14. Vershon A. K., Bowie J. U., Karplus T. M., Sauer R. T. Isolation and analysis of arc repressor mutants: evidence for an unusual mechanism of DNA binding. Proteins. 1986 Dec;1(4):302–311. doi: 10.1002/prot.340010404. [DOI] [PubMed] [Google Scholar]
  15. Vershon A. K., Youderian P., Susskind M. M., Sauer R. T. The bacteriophage P22 arc and mnt repressors. Overproduction, purification, and properties. J Biol Chem. 1985 Oct 5;260(22):12124–12129. [PubMed] [Google Scholar]
  16. Weber G., Drickamer H. G. The effect of high pressure upon proteins and other biomolecules. Q Rev Biophys. 1983 Feb;16(1):89–112. doi: 10.1017/s0033583500004935. [DOI] [PubMed] [Google Scholar]
  17. Wishart D. S., Sykes B. D., Richards F. M. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry. 1992 Feb 18;31(6):1647–1651. doi: 10.1021/bi00121a010. [DOI] [PubMed] [Google Scholar]
  18. Zagorski M. G., Bowie J. U., Vershon A. K., Sauer R. T., Patel D. J. NMR studies of Arc repressor mutants: proton assignments, secondary structure, and long-range contacts for the thermostable proline-8----leucine variant of Arc. Biochemistry. 1989 Dec 12;28(25):9813–9825. doi: 10.1021/bi00451a041. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES