Abstract
Levels of DNA sequence polymorphism at the suppressor of forked [su(f)] region in natural populations of Drosophila melanogaster and Drosophila simulans are estimated by restriction map analysis. su(f) is located at the base of the euchromatic portion of the X chromosome where the level of crossing-over per physical length is extremely low. In a survey of 55 alleles from three natural populations of D. melanogaster, only 2 restriction sites of 27 hexanucleotide and 108 tetranucleotide restriction sites scored are polymorphic. Among 103 alleles from three natural populations of D. simulans, just one polymorphic restriction site is found in 109 tetranucleotide-recognizing restriction sites scored. The few polymorphisms in these surveys yield estimates of per site heterozygosities (0.00, 0.0002, and 0.0005, respectively) at least a factor of 10 less than the average observed at loci located in regions of the genome with normal levels of crossing-over. Because under a broad category of models of molecular evolution (including the neutral theory) a correlation between levels of polymorphism and interspecific divergence is expected, the DNA sequence divergence is examined for the su(f) region. Contrary to the predicted correlation, the estimated divergence (0.12 substitution per silent site) is, in fact, greater than that observed at loci in regions of normal crossing-over. According to an alternative hypothesis (hitchhiking effect model) intraspecific polymorphism is swept out of the population in regions of the genome closely linked to rare but selectively favored variants as they quickly go to fixation; the rate of divergence is, however, unaffected by these rare hitchhiking events. Thus, the observed paucity of polymorphism and lack of correlation with divergence are in accord with the theory of the hitchhiking effect and several recent reports of polymorphism and divergence in other genomic regions with reduced crossing-over per physical length.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aguade M., Miyashita N., Langley C. H. Reduced variation in the yellow-achaete-scute region in natural populations of Drosophila melanogaster. Genetics. 1989 Jul;122(3):607–615. doi: 10.1093/genetics/122.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Begun D. J., Aquadro C. F. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature. 1992 Apr 9;356(6369):519–520. doi: 10.1038/356519a0. [DOI] [PubMed] [Google Scholar]
- Begun D. J., Aquadro C. F. Molecular population genetics of the distal portion of the X chromosome in Drosophila: evidence for genetic hitchhiking of the yellow-achaete region. Genetics. 1991 Dec;129(4):1147–1158. doi: 10.1093/genetics/129.4.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berry A. J., Ajioka J. W., Kreitman M. Lack of polymorphism on the Drosophila fourth chromosome resulting from selection. Genetics. 1991 Dec;129(4):1111–1117. doi: 10.1093/genetics/129.4.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
- Hudson R. R. Estimating genetic variability with restriction endonucleases. Genetics. 1982 Apr;100(4):711–719. doi: 10.1093/genetics/100.4.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hudson R. R., Kreitman M., Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987 May;116(1):153–159. doi: 10.1093/genetics/116.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaplan N. L., Hudson R. R., Langley C. H. The "hitchhiking effect" revisited. Genetics. 1989 Dec;123(4):887–899. doi: 10.1093/genetics/123.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kreitman M. E., Aguadé M. Excess polymorphism at the Adh locus in Drosophila melanogaster. Genetics. 1986 Sep;114(1):93–110. doi: 10.1093/genetics/114.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kreitman M., Aguadé M. Genetic uniformity in two populations of Drosophila melanogaster as revealed by filter hybridization of four-nucleotide-recognizing restriction enzyme digests. Proc Natl Acad Sci U S A. 1986 May;83(10):3562–3566. doi: 10.1073/pnas.83.10.3562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kreitman M., Hudson R. R. Inferring the evolutionary histories of the Adh and Adh-dup loci in Drosophila melanogaster from patterns of polymorphism and divergence. Genetics. 1991 Mar;127(3):565–582. doi: 10.1093/genetics/127.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macpherson J. N., Weir B. S., Leigh Brown A. J. Extensive linkage disequilibrium in the achaete-scute complex of Drosophila melanogaster. Genetics. 1990 Sep;126(1):121–129. doi: 10.1093/genetics/126.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martín-Campos J. M., Comerón J. M., Miyashita N., Aguadé M. Intraspecific and interspecific variation at the y-ac-sc region of Drosophila simulans and Drosophila melanogaster. Genetics. 1992 Apr;130(4):805–816. doi: 10.1093/genetics/130.4.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McDonald J. H., Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. doi: 10.1038/351652a0. [DOI] [PubMed] [Google Scholar]
- Miyashita N. T. Molecular and phenotypic variation of the Zw locus region in Drosophila melanogaster. Genetics. 1990 Jun;125(2):407–419. doi: 10.1093/genetics/125.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyashita N., Langley C. H. Molecular and phenotypic variation of the white locus region in Drosophila melanogaster. Genetics. 1988 Sep;120(1):199–212. doi: 10.1093/genetics/120.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moriyama E. N., Gojobori T. Rates of synonymous substitution and base composition of nuclear genes in Drosophila. Genetics. 1992 Apr;130(4):855–864. doi: 10.1093/genetics/130.4.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nei M., Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986 Sep;3(5):418–426. doi: 10.1093/oxfordjournals.molbev.a040410. [DOI] [PubMed] [Google Scholar]
- Nei M., Tajima F. DNA polymorphism detectable by restriction endonucleases. Genetics. 1981 Jan;97(1):145–163. doi: 10.1093/genetics/97.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith J. M., Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974 Feb;23(1):23–35. [PubMed] [Google Scholar]
- Stephan W., Langley C. H. Molecular genetic variation in the centromeric region of the X chromosome in three Drosophila ananassae populations. I. Contrasts between the vermilion and forked loci. Genetics. 1989 Jan;121(1):89–99. doi: 10.1093/genetics/121.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephan W., Mitchell S. J. Reduced levels of DNA polymorphism and fixed between-population differences in the centromeric region of Drosophila ananassae. Genetics. 1992 Dec;132(4):1039–1045. doi: 10.1093/genetics/132.4.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]