Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Mar 1;90(5):1829–1833. doi: 10.1073/pnas.90.5.1829

Cancer dormancy: isolation and characterization of dormant lymphoma cells.

E Yefenof 1, L J Picker 1, R H Scheuermann 1, T F Tucker 1, E S Vitetta 1, J W Uhr 1
PMCID: PMC45973  PMID: 8446596

Abstract

"Tumor dormancy" is an operational term used to describe a prolonged quiescent state in which tumor cells are present, but tumor progression is not clinically apparent. Although clinical examples of tumor dormancy abound, little is known regarding the mechanisms underlying this state. Here we utilize an antibody-induced dormancy model of an aggressive murine B-cell lymphoma (BCL1) and show that the induction of the dormant state is accompanied by dramatic changes in tumor cell morphology and cell cycle status. These data indicate the feasibility of altering the malignant phenotype of transformed cells by specific signals originating at the cell surface, and they suggest new opportunities for therapeutic intervention in cancer.

Full text

PDF
1829

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. George A. J., Tutt A. L., Stevenson F. K. Anti-idiotypic mechanisms involved in suppression of a mouse B cell lymphoma, BCL1. J Immunol. 1987 Jan 15;138(2):628–634. [PubMed] [Google Scholar]
  2. Greenberg P. D. Adoptive T cell therapy of tumors: mechanisms operative in the recognition and elimination of tumor cells. Adv Immunol. 1991;49:281–355. doi: 10.1016/s0065-2776(08)60778-6. [DOI] [PubMed] [Google Scholar]
  3. Kubbies M., Friedl R. Flow cytometric correlation between BrdU/Hoechst quench effect and base pair composition in mammalian cell nuclei. Histochemistry. 1985;83(2):133–137. doi: 10.1007/BF00495143. [DOI] [PubMed] [Google Scholar]
  4. Meeker T., Lowder J., Cleary M. L., Stewart S., Warnke R., Sklar J., Levy R. Emergence of idiotype variants during treatment of B-cell lymphoma with anti-idiotype antibodies. N Engl J Med. 1985 Jun 27;312(26):1658–1665. doi: 10.1056/NEJM198506273122602. [DOI] [PubMed] [Google Scholar]
  5. Penn I., Brunson M. E. Cancers after cyclosporine therapy. Transplant Proc. 1988 Jun;20(3 Suppl 3):885–892. [PubMed] [Google Scholar]
  6. Slavin S., Strober S. Spontaneous murine B-cell leukaemia. Nature. 1978 Apr 13;272(5654):624–626. doi: 10.1038/272624a0. [DOI] [PubMed] [Google Scholar]
  7. Strickland S., Mahdavi V. The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell. 1978 Oct;15(2):393–403. doi: 10.1016/0092-8674(78)90008-9. [DOI] [PubMed] [Google Scholar]
  8. Uhr J. W., Tucker T., May R. D., Siu H., Vitetta E. S. Cancer dormancy: studies of the murine BCL1 lymphoma. Cancer Res. 1991 Sep 15;51(18 Suppl):5045s–5053s. [PubMed] [Google Scholar]
  9. Vitetta E. S., Krolick K. A., Miyama-Inaba M., Cushley W., Uhr J. W. Immunotoxins: a new approach to cancer therapy. Science. 1983 Feb 11;219(4585):644–650. doi: 10.1126/science.6218613. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES