Skip to main content
Thorax logoLink to Thorax
. 1984 Jun;39(6):424–431. doi: 10.1136/thx.39.6.424

Changes in transcutaneous oxygen tension during exercise in pulmonary emphysema.

J A Hughes, B J Gray, D C Hutchison
PMCID: PMC459824  PMID: 6431626

Abstract

Continuous measurements of transcutaneous oxygen tension (tcPO2) were made in 23 patients with radiological evidence of emphysema, at rest and during a maximal progressive exercise test. tcPO2 during the final phase of exercise was compared with tcPO2 at rest; the mean change (exercising minus resting value) in tcPO2 (delta tcPO2) was -0.8 mm Hg (SD 10.5, range -18 to +25) (-0.1 kPa (SD 1.4, range -2.4 to +3.3]. delta tcPO2 was correlated with: resting arterial oxygen tension (PaO2) (r = 0.606, p less than 0.005); resting arterial carbon dioxide tension (PaCO2) (r = -0.691, p less than 0.001); FEV1 % predicted (r = 0.688, p less than 0.001); vital capacity % predicted (r = 0.543, p less than 0.01); and transfer factor (TLCO) % predicted (r = 0.604, p less than 0.005). There was no significant difference between the delta tcPO2 of 10 patients who regularly produced sputum and of 13 patients with no sputum. delta tcPO2 appears to be more closely related to the severity of emphysema than to the presence or absence of chronic bronchitis. Pretreatment with fenoterol aerosol resulted in an increased work load in three out of 10 patients. Overall there was no change in delta tcPO2. In all except one patient there was a rise in tcPO2 after the end of exercise. In the 11 patients whose tcPO2 fell during exercise, tcPO2 returned to the resting value within two minutes of the cessation of exercise; this was followed by a further rise beyond the resting value, and a single postexercise arterial sample is therefore a poor indicator of the response of PaO2 to exercise. Measurement of TcPO2 is of value in following rapid changes in PaO2 during and after exercise and avoids the necessity for an indwelling arterial cannula.

Full text

PDF
424

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bellamy D., Hutchison D. C. The effects of salbutamol aerosol on lung function in patients with pulmonary emphysema. Br J Dis Chest. 1981 Apr;75(2):190–196. doi: 10.1016/0007-0971(81)90052-8. [DOI] [PubMed] [Google Scholar]
  2. Cohn J. E., Donoso H. D. Exercise and intrapulmonary ventilation-perfusion relationships in chronic obstructive airway disease. Am Rev Respir Dis. 1967 Jun;95(6):1015–1025. doi: 10.1164/arrd.1967.95.6.1015. [DOI] [PubMed] [Google Scholar]
  3. Eberhard P., Hammacher K., Mindt W. Methode zur kutanen Messung des Sauerstoffpartialdruckes. Biomed Tech (Berl) 1973 Dec;18(6):216–221. doi: 10.1515/bmte.1973.18.6.216. [DOI] [PubMed] [Google Scholar]
  4. Emmanuel G. E., Moreno F. Distribution of ventilation and blood flow during exercise in emphysema. J Appl Physiol. 1966 Sep;21(5):1532–1544. doi: 10.1152/jappl.1966.21.5.1532. [DOI] [PubMed] [Google Scholar]
  5. Filley G. F., Beckwitt H. J., Reeves J. T., Mitchell R. S. Chronic obstructive bronchopulmonary disease. II. Oxygen transport in two clinical types. Am J Med. 1968 Jan;44(1):26–38. doi: 10.1016/0002-9343(68)90234-9. [DOI] [PubMed] [Google Scholar]
  6. Huch A., Huch R., Arner B., Rooth G. Continuous transcutaneous oxygen tension measured with a heated electrode. Scand J Clin Lab Invest. 1973 May;31(3):269–275. doi: 10.3109/00365517309082431. [DOI] [PubMed] [Google Scholar]
  7. Huch R., Lübbers W., Huch A. Reliability of transcutaneous monitoring of arterial PO2 in newborn infants. Arch Dis Child. 1974 Mar;49(3):213–218. doi: 10.1136/adc.49.3.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hughes J. A., Tobin M. J., Bellamy D., Hutchison D. C. Effects of ipratropium bromide and fenoterol aerosols in pulmonary emphysema. Thorax. 1982 Sep;37(9):667–670. doi: 10.1136/thx.37.9.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hutchison D. C., Rocca G., Honeybourne D. Estimation of arterial oxygen tension in adult subjects using a transcutaneous electrode. Thorax. 1981 Jun;36(6):473–477. doi: 10.1136/thx.36.6.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jones N. L. Pulmonary gas exchange during exercise in patients with chronic airway obstruction. Clin Sci. 1966 Aug;31(1):39–50. [PubMed] [Google Scholar]
  11. Leitch A. G., Hopkin J. M., Ellis D. A., Merchant S., McHardy G. J. The effect of aerosol ipratropium bromide and salbutamol on exercise tolerance in chronic bronchitis. Thorax. 1978 Dec;33(6):711–713. doi: 10.1136/thx.33.6.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Minh V. D., Lee H. M., Dolan G. F., Light R. W., Bell J., Vasquez P. Hypoxemia during exercise in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis. 1979 Oct;120(4):787–794. doi: 10.1164/arrd.1979.120.4.787. [DOI] [PubMed] [Google Scholar]
  13. Ries A. L., Fedullo P. F., Clausen J. L. Rapid changes in arterial blood gas levels after exercise in pulmonary patients. Chest. 1983 Mar;83(3):454–456. doi: 10.1378/chest.83.3.454. [DOI] [PubMed] [Google Scholar]
  14. Saunders N. A., Powles A. C., Rebuck A. S. Ear oximetry: accuracy and practicability in the assessment of arterial oxygenation. Am Rev Respir Dis. 1976 Jun;113(6):745–749. doi: 10.1164/arrd.1976.113.6.745. [DOI] [PubMed] [Google Scholar]
  15. Schonfeld T., Sargent C. W., Bautista D., Walters M. A., O'Neal M. H., Platzker A. C., Keens T. G. Transcutaneous oxygen monitoring during exercise stress testing. Am Rev Respir Dis. 1980 Mar;121(3):457–462. doi: 10.1164/arrd.1980.121.3.457. [DOI] [PubMed] [Google Scholar]
  16. Simpson R. M., Bryan M. H. Transcutaneous oximetry. Br J Hosp Med. 1982 Sep;28(3):269–272. [PubMed] [Google Scholar]
  17. Wagner P. D., Dantzker D. R., Dueck R., Clausen J. L., West J. B. Ventilation-perfusion inequality in chronic obstructive pulmonary disease. J Clin Invest. 1977 Feb;59(2):203–216. doi: 10.1172/JCI108630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wagner P. D., West J. B. Effects of diffusion impairment on O 2 and CO 2 time courses in pulmonary capillaries. J Appl Physiol. 1972 Jul;33(1):62–71. doi: 10.1152/jappl.1972.33.1.62. [DOI] [PubMed] [Google Scholar]
  19. le Souëf P. N., Morgan A. K., Soutter L. P., Reynolds E. O., Parker D. Comparison of transcutaneous oxygen tension with arterial oxygen tension in newborn infants with severe respiratory illnesses. Pediatrics. 1978 Nov;62(5):692–697. [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES