Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Mar 1;90(5):1892–1896. doi: 10.1073/pnas.90.5.1892

Kinship bioassay on hypervariable loci in blacks and Caucasians.

N E Morton 1, A Collins 1, I Balazs 1
PMCID: PMC45986  PMID: 8446605

Abstract

Four hypervariable loci were examined in DNA samples of American Blacks and Caucasians. Genetic diversity, measured by mean kinship within race, is 0.004 for a sliding window equal to twice the radius of coalescence of the autoradiographic bands. Kinship increases with the width of a window or bin, but it is an order of magnitude less than for blood groups and isozymes. This must reflect the greater mutability of hypervariable loci and absence of divergent selection. Low kinship implies that matching probabilities do not depend critically on race. Complete matching between pairs of loci shows deviations from independence, presumably because of inadvertent inclusion of replicated samples or related individuals. Multilocus matching probabilities were corrected for this (possibly spurious) dependence; the correction is negligible. When the complexities of coalescence, kinship, and dependent matching are allowed for, the probability calculations used in forensic identification are reliable. Recent counterarguments without theoretical basis or empirical support are discussed.

Full text

PDF
1892

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balazs I., Baird M., Clyne M., Meade E. Human population genetic studies of five hypervariable DNA loci. Am J Hum Genet. 1989 Feb;44(2):182–190. [PMC free article] [PubMed] [Google Scholar]
  2. Bowcock A. M., Hebert J. M., Mountain J. L., Kidd J. R., Rogers J., Kidd K. K., Cavalli-Sforza L. L. Study of an additional 58 DNA markers in five human populations from four continents. Gene Geogr. 1991 Dec;5(3):151–173. [PubMed] [Google Scholar]
  3. Caskey C. T. Comments on DNA-based forensic analysis. Am J Hum Genet. 1991 Oct;49(4):893-5, 899-903. [PMC free article] [PubMed] [Google Scholar]
  4. Chakraborty R., Kidd K. K. The utility of DNA typing in forensic work. Science. 1991 Dec 20;254(5039):1735–1739. doi: 10.1126/science.1763323. [DOI] [PubMed] [Google Scholar]
  5. Devlin B., Risch N., Roeder K. No excess of homozygosity at loci used for DNA fingerprinting. Science. 1990 Sep 21;249(4975):1416–1420. doi: 10.1126/science.2205919. [DOI] [PubMed] [Google Scholar]
  6. Jeffreys A. J., MacLeod A., Tamaki K., Neil D. L., Monckton D. G. Minisatellite repeat coding as a digital approach to DNA typing. Nature. 1991 Nov 21;354(6350):204–209. doi: 10.1038/354204a0. [DOI] [PubMed] [Google Scholar]
  7. Lander E. S. Research on DNA typing catching up with courtroom application. Am J Hum Genet. 1991 May;48(5):819–823. [PMC free article] [PubMed] [Google Scholar]
  8. Lewontin R. C., Hartl D. L. Population genetics in forensic DNA typing. Science. 1991 Dec 20;254(5039):1745–1750. doi: 10.1126/science.1845040. [DOI] [PubMed] [Google Scholar]
  9. Mi M. P., Morton N. E. Blood factor association. Vox Sang. 1966 Jul-Aug;11(4):434–449. doi: 10.1111/j.1423-0410.1966.tb04240.x. [DOI] [PubMed] [Google Scholar]
  10. Morton N. E. Genetic structure of forensic populations. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2556–2560. doi: 10.1073/pnas.89.7.2556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Morton N. E., Wu D. Alternative bioassays of kinship between loci. Am J Hum Genet. 1988 Jan;42(1):173–177. [PMC free article] [PubMed] [Google Scholar]
  12. Nichols R. A., Balding D. J. Effects of population structure on DNA fingerprint analysis in forensic science. Heredity (Edinb) 1991 Apr;66(Pt 2):297–302. doi: 10.1038/hdy.1991.37. [DOI] [PubMed] [Google Scholar]
  13. Weir B. S. Population genetics in the forensic DNA debate. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11654–11659. doi: 10.1073/pnas.89.24.11654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wooley J. R. A response to Lander: the courtroom perspective. Am J Hum Genet. 1991 Oct;49(4):892-3, 899-903. [PMC free article] [PubMed] [Google Scholar]
  15. Yasuda N. Estimation of the inbreeding coefficient from phenotype frequencies by a method of maximum likelihood scoring. Biometrics. 1968 Dec;24(4):915–935. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES