Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Mar 1;90(5):1897–1901. doi: 10.1073/pnas.90.5.1897

Peptide analogues alter the progression of premalignant lesions, as measured by Photofrin fluorescence.

C Liebow 1, D H Crean 1, A V Schally 1, T S Mang 1
PMCID: PMC45987  PMID: 8095335

Abstract

Somatostatin analogue RC-160 and bombesin/gastrin-releasing peptide antagonist RC-3095 were infused at 2 micrograms per day via miniosmotic pumps implanted s.c. in hamsters with premalignant disease to examine the effect of these peptides on cancer promotion and progression. These analogues have been shown to inhibit growth of certain tumors, especially those that overexpress tyrosine kinase activity. Progression of premalignant lesions initiated by applying 0.5% 9,10-dimethyl-1,2-benzanthracene (DMBA) to the hamster buccal cheek pouch was measured by Photofrin-induced fluorescence 24 hr after injecting the porphyrin (1.0 mg/kg) by using in vivo fluorescence photometry. This method of monitoring progression was reaffirmed by the observations that fluorescence increased significantly as compared with controls in lesions receiving 4 additional weeks of continuous promotion by DMBA application (P < 0.01 in two independent trials) and in lesions receiving transient promotion by laser incision (P < 0.01 and < 0.05 at the same time in the two trials). Twelve weeks after treatment, fluorescence had decreased significantly among animals treated for 2 weeks with RC-3095 (control, 0.53 +/- 0.03 V vs. RC-3095, 0.28 +/- 0.03 V; P < 0.0005) or with RC-160 (control, 0.85 +/- 0.03 V vs. RC-160, 0.24 +/- 0.03 V; P < 0.0001). These data were obtained 20 weeks after DMBA initiation. Thus, treatment with RC-160 and RC-3095 decreased the progression, measured by fluorescence, compared with control animals. In addition, there was also an absolute continuous decrease in fluorescence for the 22 weeks after the cessation of RC-160 treatment. That the changes in tumor progression produced by RC-160 extended beyond the treatment period supports the hypothesis that the changes were irreversible. Histopathological analysis revealed normal tissue and/or mild-moderate dysplasia in hamster buccal mucosa treated with the RC-160 (an improvement compared to pretreatment), whereas 40% of the animals receiving no treatment after DMBA initiation developed invasive squamous cell carcinomas after 20 weeks. These results show that the antagonists of bombesin/gastrin-releasing peptide can delay the development of malignancies and the agonists of somatostatin can potentially reverse this development.

Full text

PDF
1897

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames B. N., Gold L. S. Too many rodent carcinogens: mitogenesis increases mutagenesis. Science. 1990 Aug 31;249(4972):970–971. doi: 10.1126/science.2136249. [DOI] [PubMed] [Google Scholar]
  2. Andrén-Sandberg A. Treatment with an LHRH analogue in patients with advanced pancreatic cancer. A preliminary report. Acta Chir Scand. 1990 Aug;156(8):549–551. [PubMed] [Google Scholar]
  3. Bishop J. M. The molecular genetics of cancer. Science. 1987 Jan 16;235(4786):305–311. doi: 10.1126/science.3541204. [DOI] [PubMed] [Google Scholar]
  4. Bruckner H. W., Motwani B. T. Treatment of advanced refractory ovarian carcinoma with a gonadotropin-releasing hormone analogue. Am J Obstet Gynecol. 1989 Nov;161(5):1216–1218. doi: 10.1016/0002-9378(89)90669-8. [DOI] [PubMed] [Google Scholar]
  5. Carpenter G., Cohen S. Epidermal growth factor. J Biol Chem. 1990 May 15;265(14):7709–7712. [PubMed] [Google Scholar]
  6. Douzinas E., Lavagna C., Nano J. L., Rampal P. Effects of an inhibitor isolated from human small intestine on organ culture of intestinal mucosa. Digestion. 1990;46 (Suppl 2):170–176. doi: 10.1159/000200382. [DOI] [PubMed] [Google Scholar]
  7. Egan S. E., Wright J. A., Jarolim L., Yanagihara K., Bassin R. H., Greenberg A. H. Transformation by oncogenes encoding protein kinases induces the metastatic phenotype. Science. 1987 Oct 9;238(4824):202–205. doi: 10.1126/science.3659911. [DOI] [PubMed] [Google Scholar]
  8. Eveson J. W. Animal models of intra-oral chemical carcinogenesis: a review. J Oral Pathol. 1981 Jun;10(3):129–146. doi: 10.1111/j.1600-0714.1981.tb01259.x. [DOI] [PubMed] [Google Scholar]
  9. Fekete M., Redding T. W., Comaru-Schally A. M., Pontes J. E., Connelly R. W., Srkalovic G., Schally A. V. Receptors for luteinizing hormone-releasing hormone, somatostatin, prolactin, and epidermal growth factor in rat and human prostate cancers and in benign prostate hyperplasia. Prostate. 1989;14(3):191–208. doi: 10.1002/pros.2990140302. [DOI] [PubMed] [Google Scholar]
  10. Fekete M., Wittliff J. L., Schally A. V. Characteristics and distribution of receptors for [D-TRP6]-luteinizing hormone-releasing hormone, somatostatin, epidermal growth factor, and sex steroids in 500 biopsy samples of human breast cancer. J Clin Lab Anal. 1989;3(3):137–147. doi: 10.1002/jcla.1860030302. [DOI] [PubMed] [Google Scholar]
  11. Fischer E. H., Charbonneau H., Tonks N. K. Protein tyrosine phosphatases: a diverse family of intracellular and transmembrane enzymes. Science. 1991 Jul 26;253(5018):401–406. doi: 10.1126/science.1650499. [DOI] [PubMed] [Google Scholar]
  12. Gomer C. J., Dougherty T. J. Determination of [3H]- and [14C]hematoporphyrin derivative distribution in malignant and normal tissue. Cancer Res. 1979 Jan;39(1):146–151. [PubMed] [Google Scholar]
  13. Hierowski M. T., Liebow C., du Sapin K., Schally A. V. Stimulation by somatostatin of dephosphorylation of membrane proteins in pancreatic cancer MIA PaCa-2 cell line. FEBS Lett. 1985 Jan 7;179(2):252–256. doi: 10.1016/0014-5793(85)80529-9. [DOI] [PubMed] [Google Scholar]
  14. Hunter T. Protein-tyrosine phosphatases: the other side of the coin. Cell. 1989 Sep 22;58(6):1013–1016. doi: 10.1016/0092-8674(89)90496-0. [DOI] [PubMed] [Google Scholar]
  15. Hunter T. The functions of oncogene products. Prog Clin Biol Res. 1989;288:25–34. [PubMed] [Google Scholar]
  16. Lamberts S. W., Hofland L. J., van Koetsveld P. M., Reubi J. C., Bruining H. A., Bakker W. H., Krenning E. P. Parallel in vivo and in vitro detection of functional somatostatin receptors in human endocrine pancreatic tumors: consequences with regard to diagnosis, localization, and therapy. J Clin Endocrinol Metab. 1990 Sep;71(3):566–574. doi: 10.1210/jcem-71-3-566. [DOI] [PubMed] [Google Scholar]
  17. Lee M. T., Liebow C., Kamer A. R., Schally A. V. Effects of epidermal growth factor and analogues of luteinizing hormone-releasing hormone and somatostatin on phosphorylation and dephosphorylation of tyrosine residues of specific protein substrates in various tumors. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1656–1660. doi: 10.1073/pnas.88.5.1656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liebow C., Hierowski M., duSapin K. Hormonal control of pancreatic cancer growth. Pancreas. 1986;1(1):44–48. doi: 10.1097/00006676-198601000-00009. [DOI] [PubMed] [Google Scholar]
  19. Liebow C., Reilly C., Serrano M., Schally A. V. Somatostatin analogues inhibit growth of pancreatic cancer by stimulating tyrosine phosphatase. Proc Natl Acad Sci U S A. 1989 Mar;86(6):2003–2007. doi: 10.1073/pnas.86.6.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. MacAuley A., Cooper J. A. Acidic residues at the carboxyl terminus of p60c-src are required for regulation of tyrosine kinase activity and transformation. New Biol. 1990 Sep;2(9):828–840. [PubMed] [Google Scholar]
  21. Mahmoud S., Staley J., Taylor J., Bogden A., Moreau J. P., Coy D., Avis I., Cuttitta F., Mulshine J. L., Moody T. W. [Psi 13,14] bombesin analogues inhibit growth of small cell lung cancerin vitro and in vivo. Cancer Res. 1991 Apr 1;51(7):1798–1802. [PubMed] [Google Scholar]
  22. Mang T. S., McGinnis C., Liebow C., Nseyo U. O., Crean D. H., Dougherty T. J. Fluorescence detection of tumors. Early diagnosis of microscopic lesions in preclinical studies. Cancer. 1993 Jan 1;71(1):269–276. doi: 10.1002/1097-0142(19930101)71:1<269::aid-cncr2820710141>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
  23. Pagliacci M. C., Tognellini R., Grignani F., Nicoletti I. Inhibition of human breast cancer cell (MCF-7) growth in vitro by the somatostatin analog SMS 201-995: effects on cell cycle parameters and apoptotic cell death. Endocrinology. 1991 Nov;129(5):2555–2562. doi: 10.1210/endo-129-5-2555. [DOI] [PubMed] [Google Scholar]
  24. Reubi J. C., Kvols L., Krenning E., Lamberts S. W. Distribution of somatostatin receptors in normal and tumor tissue. Metabolism. 1990 Sep;39(9 Suppl 2):78–81. doi: 10.1016/0026-0495(90)90217-z. [DOI] [PubMed] [Google Scholar]
  25. Rozengurt E. Bombesin stimulation of mitogenesis. Specific receptors, signal transduction, and early events. Am Rev Respir Dis. 1990 Dec;142(6 Pt 2):S11–S15. doi: 10.1164/ajrccm/142.6_Pt_2.S11. [DOI] [PubMed] [Google Scholar]
  26. SALLEY J. J. Experimental carcinogenesis in the cheek pouch of the Syrian hamster. J Dent Res. 1954 Apr;33(2):253–262. doi: 10.1177/00220345540330021201. [DOI] [PubMed] [Google Scholar]
  27. Shklar G., Eisenberg E., Flynn E. Immunoenhancing agents and experimental leukoplakia and carcinoma of the hamster buccal pouch. Prog Exp Tumor Res. 1979;24:269–282. doi: 10.1159/000402104. [DOI] [PubMed] [Google Scholar]
  28. Szepeshazi K., Schally A. V., Cai R. Z., Radulovic S., Milovanovic S., Szoke B. Inhibitory effect of bombesin/gastrin-releasing peptide antagonist RC-3095 and high dose of somatostatin analogue RC-160 on nitrosamine-induced pancreatic cancers in hamsters. Cancer Res. 1991 Nov 1;51(21):5980–5986. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES