Skip to main content
ACS AuthorChoice logoLink to ACS AuthorChoice
. 2015 Sep 17;137(38):12207–12210. doi: 10.1021/jacs.5b07795

Palladium-Catalyzed Enantioselective 1,1-Fluoroarylation of Aminoalkenes

Ying He †,, Zhenyu Yang , Richard T Thornbury , F Dean Toste †,*
PMCID: PMC4601482  PMID: 26378886

Abstract

graphic file with name ja-2015-07795t_0010.jpg

The development of an enantioselective palladium-catalyzed 1,1-fluoroarylation of unactivated aminoalkenes is described. The reaction uses arylboronic acids as the arene source and Selectfluor as the fluorine source to generate benzylic fluorides in good yields with excellent enantioselectivities. This transformation, likely proceeding through an oxidative Heck mechanism, affords 1,1-difunctionalized alkene products.


The unique properties engendered by fluorine1 have inspired a number of strategies for the enantioselective construction of C–F bonds employing either electrophilic or nucleophilic fluorine sources.25 The difunctionalization of alkenes has emerged as an attractive strategy for the simultaneous formation of C–F and C–X (X = C, N, P, etc.) bonds.6,7 However, while great progress has been made in fluorocyclization of alkenes,8 intermolecular difunctionalization of alkenes as a means for enantioselective construction of C–F bonds remains challenging.9 We recently reported a palladium-catalyzed asymmetric 1,2-fluoroarylation of styrenes with boronic acids and Selectfluor as the fluorine source (Figure 1a).10 Key to this transformation was the placement of a directing group on the alkene, which disfavored the oxidative Heck reaction11 and allowed for C–F bond formation via a high-valent palladium intermediate.12 In contrast, Sanford has described the 1,2 or 1,1-arylchlorination/bromination of alkenes with arylstannanes (Figure 1b) in the absence of a directing group on the alkene.13 Inspired by these reports, we have developed a catalytic enantioselective 1,1-arylfluorination of alkenes with arylboronic acids and Selectfluor (Figure 1c).

Figure 1.

Figure 1

Pd-catalyzed arylhalogenation of alkenes.

On the basis of the interest in fluorine-containing amines,14 we began our investigation by examining the fluoroarylation of protected allylamine 1a with phenylboronic acid (2a). Using these substrates, conditions similar to those previously employed in the 1,2-fluoroarylation of styrenes10 afforded the 1,1-fluoroarylation product 3a, albeit with moderate yield (Table 1, entry 1). Notably, the product derived from the 1,2-fluoroarylation of 1a was not observed.15 Encouraged by this discovery, we set out to further optimize the reaction conditions. Modification of the ligand afforded little change in the yield (Table 1, entry 2). The use of N-fluorobenzenesulfonimide (NFSI) as an alternative source of fluorine resulted in only trace yield of 3a (Table 1, entry 3). Changing the nitrogen protecting group did not have a dramatic impact on the yield of this transformation (Table 1, entries 4–6). No 1,1-fluoroarylated product was formed when water (Table 1, entry 7), ligand, or palladium (Table 1, entry 8) were removed from the reaction. However, the addition 0.1 mL of MeCN resulted in an increase in yield to 75% (Table 1, entry 9).

Table 1. Selected Optimization of Reaction Conditionsa.

graphic file with name ja-2015-07795t_0003.jpg

entry variation from “standard conditions” yield (%)b
1 none 50
2 2,2′-bipyridine as ligand 44
3 NFSI instead of Selectfluor trace
4 Ts instead of Ns in 1a 44
5 Mbs instead of Ns in 1a 40
6 Ms instead of Ns in 1a 42
7 no water  
8 no catalyst or no ligand  
9 MeCN (0.1 mL) as additive 75c
a

Reaction conditions: all reactions were run on 0.1 mmol scale with respect to 1a. Ligand: 4,4′-ditert-butyl-2,2′-bipyridine; CH2Cl2, 1.0 mL; H2O, 0.2 mL.

b

1H NMR yield using 1,3,5-trimethoxybenzene as internal standard.

c

Isolated yield. Ns = 4-nitrobenzenesulfonyl, Ts = 4-methylbenzenesulfonyl, Mbs =4-methoxybenzenesulfonyl, Ms = methanesulfonyl.

With the optimized conditions in hand, we investigated the scope of the palladium-catalyzed 1,1-arylfluorination (Table 2). The reaction was amenable to halogen and alkyl substitution in the para- and meta-positions of the arylboronic acids (3a3h). Additionally, the coupling of an arylboronic acid substituted with an electron-withdrawing ester group afforded benzyl fluoride 3i in 48% yield. With respect to the alkene scope, substitution at nitrogen with aryl moieties bearing either electron-donating or electron-withdrawing groups in the para- or meta- position was well tolerated (3j3n). Notably, γ-fluoroamine 3l was also obtained in good yield, leaving the iodo group intact for further transformations. Moreover, substrates derived from hindered anilines proved competent in this transformation (3o and 3p). The reaction was not limited to aniline derived substrates. Substrates with alkyl, O-alkyl, and heteroaryl-substitution at nitrogen also furnished the desired products in good yields (3q, 3r, and 3u).

Table 2. Substrate Scopea.

graphic file with name ja-2015-07795t_0004.jpg

graphic file with name ja-2015-07795t_0005.jpg

a

Reaction conditions: alkene (0.1 mmol), boronic acid (0.2 mmol), Selectfluor, (0.2 mmol), ligand: 4,4′-ditert-butyl-2,2′-bipyridine; CH2Cl2, 1.0 mL; H2O, 0.2 mL; MeCN, 0.1 mL; yield of isolated products.

Use of a substrate derived from (±)-2-phenylglycine provided the corresponding product in excellent yield and a modest diastereomeric ratio (1.8:1) (3s). A longer chain alkene was also effective in the 1,1-fluoroarylation reaction, affording the desired δ-fluoroamine (3t) in 60% yield.16

In light of the described results, we investigated the enantioselective palladium-catalyzed 1,1-fluoroarylation. Selected optimization studies are shown in Table 3 (for additional details, see the Supporting Information). Both Pd(OAc)2 and Pd(MeCN)2Cl2 gave disappointing results without added nitrile (Table 3, entries 1 and 2); however, the reaction proceeded smoothly in the presence of acetonitrile as an additive, affording γ-fluoroamine 3a in 68% yield and 66% ee (Table 3, entry 3). On the basis of this initial result, examination of a variety of nitriles (see Supporting Information for full details) revealed that use of benzyl nitrile as an additive produced the desired product with the highest enantioselectivity (Table 3, entries 4 and 5). We then surveyed the effect of ligand, solvent, and temperature on the reaction and found that the enantiomeric excess of 3a was improved to 90% ee when using a solvent mixture of benzene/water at 4 °C for 18 h (Table 3, entries 6–10).17

Table 3. Selected Optimized Conditions of Enantioselective 1,1-Fluoroarylationa.

graphic file with name ja-2015-07795t_0006.jpg

entry Pd ligand solvent nitrile % eeb (yieldc)
1 Pd(OAc)2 L1 CH2Cl2/H2O    
2 Pd(MeCN)2Cl2 L1 CH2Cl2/H2O   (trace)
3 Pd(MeCN)2Cl2 L1 CH2Cl2/H2O MeCN 66 (68%)
4 Pd(MeCN)2Cl2 L1 CH2Cl2/H2O iPrCN 82
5 Pd(MeCN)2Cl2 L1 CH2Cl2/H2O BnCN 84
6 Pd(MeCN)2Cl2 L2 CH2Cl2/H2O BnCN 81
7 Pd(MeCN)2Cl2 L3 CH2Cl2/H2O BnCN 55
8 Pd(MeCN)2Cl2 L1 CH2Cl2 BnCN 80
9 Pd(MeCN)2Cl2 L1 benzene/H2O BnCN 87
10d Pd(MeCN)2Cl2 L1 benzene/H2O BnCN 90 (46%)

graphic file with name ja-2015-07795t_0007.jpg

a

Reaction conditions: 1a (0.1 mmol), 2a (0.3 mmol), Selectfluor (0.3 mmol); Cat., 10 mol %; ligand, 13 mol %; solvent, 0.8 mL; H2O, 0.8 mL; nitrile, 0.1 mL; rt, 18 h.

b

% ee determined by chiral HPLC.

c

1H NMR yields in parentheses.

d

The reaction was carried out at 4 °C for 18 h, isolated yield in parentheses.

The substrate scope of the enantioselective transformation was explored under these optimized conditions. The reaction tolerated substitution in both the para- and meta- positions of the boronic acid coupling partner, producing the corresponding fluoroamines in 86–91% ee (Table 4, 3a3g, 3x). With respect to the substitution at nitrogen, aniline-derived substrates bearing electron-donating or electron-withdrawing groups at the para- and meta- positions furnished the corresponding products in good to excellent enantioselectivities (3j3n, 3w). Additionally, a heteroaryl group on nitrogen was also tolerated under the enantioselective conditions, affording the 1,1-fluoroarylation adduct 3u in 81% ee, albeit in 35% yield. Substrates with O-methyl and alkyl groups on nitrogen also provided the products in 81% ee to 84% ee (3q, 3r, and 3v); however, when a longer chain alkene was used, the product (3t) was obtained in 66% ee.

Table 4. Substrate Scope of Enantioselective 1,1-Fluoroarylationab18.

graphic file with name ja-2015-07795t_0008.jpg

graphic file with name ja-2015-07795t_0009.jpg

a

% ee determined by chiral HPLC, isolated yield; absolute configuration assigned by analogy to that of 3x, which was determined to be (R) by single-crystal X-ray diffraction (see Supporting Information for details).

b

Run at room-temperature in CH2Cl2:H2O (1:1).

To demonstrate potential application of these chiral benzylic fluorides, removal of the nosyl group of 3a was carried out. The deprotection proceeded smoothly at room temperature, affording γ-fluoroamine in 60% yield while maintaining the enantiomeric excess; see eq 1:

graphic file with name ja-2015-07795t_0001.jpg 1

In conclusion, we have disclosed a palladium-catalyzed 1,1-fluoroarylation of unactivated amino-alkenes by a three-component coupling of alkenes, arylboronic acids, and Selectfluor. Moreover, the reaction was extended to an asymmetric transformation that generated chiral benzylic fluorides in good to excellent enantioselectivies. This method promises to serve as a powerful strategy for the difunctionalization of alkenes to provide chiral fluorinated molecules.

Acknowledgments

We are grateful for financial support from the NIHGMS (RO1 GM073932), the National Natural Science Foundation of China (21332005), and Jiangsu Innovation Programs of China. We gratefully acknowledge the College of Chemistry CheXray (NIH Shared Instrumentation Grant No. S10-RR027172) and Dr. Antonio DiPasquale for X-ray crystallographic data. We also thank Andrew Neel for assistance with variable temperature NMR experiments.

Supporting Information Available

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b07795.

  • Crystallographic data (CIF)

  • Experimental procedures; compound characterization data (PDF)

Author Contributions

§ Y.H. and Z.-Y.Y. contributed equally to this work.

The authors declare no competing financial interest.

Supplementary Material

ja5b07795_si_001.cif (2.1MB, cif)
ja5b07795_si_002.pdf (8.8MB, pdf)

References

  1. For recent reviews in medicinal chemistry, see; a O'Hagan D. Chem. Soc. Rev. 2008, 37, 308. 10.1039/B711844A. [DOI] [PubMed] [Google Scholar]; b Purser S.; Moore P. R.; Swallow S.; Gouverneur V. Chem. Soc. Rev. 2008, 37, 320. 10.1039/B610213C. [DOI] [PubMed] [Google Scholar]; c Hagmann W. K. J. Med. Chem. 2008, 51, 4359. 10.1021/jm800219f. [DOI] [PubMed] [Google Scholar]; d Müller K.; Faeh C.; Diederich F. Science 2007, 317, 1881. 10.1126/science.1131943. [DOI] [PubMed] [Google Scholar]; e Qiu X.-L.; Xu X.-H.; Qing F.-L. Tetrahedron 2010, 66, 789. 10.1016/j.tet.2009.11.001. [DOI] [Google Scholar]; f Wang J.; Sánchez-Roselló M.; Aceña J. L.; del Pozo C.; Sorochinsky A. E.; Fustero S.; Soloshonok V. A.; Liu H. Chem. Rev. 2014, 114, 2432. 10.1021/cr4002879. [DOI] [PubMed] [Google Scholar]; g Kirk K. L. Org. Process Res. Dev. 2008, 12, 305. 10.1021/op700134j. [DOI] [Google Scholar]; h Narayanan A.; Jones L. H. Chem. Sci. 2015, 6, 2650. 10.1039/C5SC00408J. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. For recent reviews on fluorination, see; a Liang T.; Neumann C. N.; Ritter T. Angew. Chem., Int. Ed. 2013, 52, 8214. 10.1002/anie.201206566. [DOI] [PubMed] [Google Scholar]; b Furuya T.; Kamlet A. S.; Ritter T. Nature 2011, 473, 470. 10.1038/nature10108. [DOI] [PMC free article] [PubMed] [Google Scholar]; c Yang X.-Y.; Wu T.; Phipps R. J.; Toste F. D. Chem. Rev. 2015, 115, 826. 10.1021/cr500277b. [DOI] [PMC free article] [PubMed] [Google Scholar]; d Brooks A. F.; Topczewski J. J.; Ichiishi N.; Sanford M. S.; Scott P. J. Chem. Sci. 2014, 5, 4545. 10.1039/C4SC02099E. [DOI] [PMC free article] [PubMed] [Google Scholar]; e Campbell M. G.; Ritter T. Chem. Rev. 2015, 115, 612. 10.1021/cr500366b. [DOI] [PubMed] [Google Scholar]
  3. For selected recent reports on electrophilic enantioselective fluorination, see; a Kwiatkowski P.; Beeson T. D.; Conrad J. C.; MacMillan D. W. C. J. Am. Chem. Soc. 2011, 133, 1738. 10.1021/ja111163u. [DOI] [PMC free article] [PubMed] [Google Scholar]; b Suzuki S.; Kitamura Y.; Lectard S.; Hamashima Y.; Sodeoka M. Angew. Chem., Int. Ed. 2012, 51, 4581. 10.1002/anie.201201303. [DOI] [PubMed] [Google Scholar]; c Phipps R. J.; Hiramatsu K.; Toste F. D. J. Am. Chem. Soc. 2012, 134, 8376. 10.1021/ja303959p. [DOI] [PubMed] [Google Scholar]; d Zhao Y.-M.; Cheung M. S.; Lin Z.; Sun J.-W. Angew. Chem., Int. Ed. 2012, 51, 10359. 10.1002/anie.201204521. [DOI] [PubMed] [Google Scholar]; e Phipps R. J.; Toste F. D. J. Am. Chem. Soc. 2013, 135, 1268. 10.1021/ja311798q. [DOI] [PubMed] [Google Scholar]; f Romanov-Michailidis F.; Guenée L.; Alexakis A. Angew. Chem., Int. Ed. 2013, 52, 9266. 10.1002/anie.201303527. [DOI] [PubMed] [Google Scholar]; g Wu J.; Wang Y.-M.; Drljevic A.; Rauniyar V.; Phipps R. J.; Toste F. D. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 13729. 10.1073/pnas.1304346110. [DOI] [PMC free article] [PubMed] [Google Scholar]; h Yang X.; Phipps R. J.; Toste F. D. J. Am. Chem. Soc. 2014, 136, 5225. 10.1021/ja500882x. [DOI] [PMC free article] [PubMed] [Google Scholar]; i Zi W.-W.; Wang Y.-M.; Toste F. D. J. Am. Chem. Soc. 2014, 136, 12864. 10.1021/ja507468u. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. For selected reports on nucleophilic enantioselective fluorination, see; a Haufe G.; Bruns S. Adv. Synth. Catal. 2002, 344, 165.. [DOI] [Google Scholar]; b Kalow J. A.; Doyle A. G. J. Am. Chem. Soc. 2010, 132, 3268. 10.1021/ja100161d. [DOI] [PubMed] [Google Scholar]; c Katcher M. H.; Doyle A. G. J. Am. Chem. Soc. 2010, 132, 17402. 10.1021/ja109120n. [DOI] [PubMed] [Google Scholar]; d Kalow J. A.; Doyle A. G. J. Am. Chem. Soc. 2011, 133, 16001. 10.1021/ja207256s. [DOI] [PubMed] [Google Scholar]; e Katcher M. H.; Sha A.; Doyle A. G. J. Am. Chem. Soc. 2011, 133, 15902. 10.1021/ja206960k. [DOI] [PubMed] [Google Scholar]; f Zhu J.; Tsui G. C.; Lautens M. Angew. Chem., Int. Ed. 2012, 51, 12353. 10.1002/anie.201207356. [DOI] [PubMed] [Google Scholar]
  5. For an indirect approach of enantioselective fluorination, see; a Liang Y.-F.; Fu G. C. J. Am. Chem. Soc. 2014, 136, 5520. 10.1021/ja501815p. [DOI] [PMC free article] [PubMed] [Google Scholar]; b Lee S. Y.; Neufeind S.; Fu G. C. J. Am. Chem. Soc. 2014, 136, 8899. 10.1021/ja5044209. [DOI] [PMC free article] [PubMed] [Google Scholar]; c Jiang X.-J.; Sakthivel S.; Kulbitski K.; Nisnevich G.; Gandelman M. J. Am. Chem. Soc. 2014, 136, 9548. 10.1021/ja504089y. [DOI] [PubMed] [Google Scholar]; d Jiang X.-J.; Gandelman M. J. Am. Chem. Soc. 2015, 137, 2542. 10.1021/jacs.5b00473. [DOI] [PubMed] [Google Scholar]
  6. For examples of the formation of C–F bonds by intermolecular alkene difunctionalization reactions, see: Aminofluoroination; a Qiu S.-F.; Xu T.; Zhou J.; Guo Y.-L.; Liu G.-S. J. Am. Chem. Soc. 2010, 132, 2856. 10.1021/ja909716k. [DOI] [PubMed] [Google Scholar]; b Saavedra-Olavarría J.; Arteaga G. C.; López J. J.; Pérez E. G. Chem. Commun. 2015, 51, 3379. 10.1039/C4CC10162F. [DOI] [PubMed] [Google Scholar]; Phosphosofluorination; c Zhang C.-W.; Li Z.-D.; Zhu L.; Yu L.-M.; Wang Z.-T.; Li C.-Z. J. Am. Chem. Soc. 2013, 135, 14082. 10.1021/ja408031s. [DOI] [PubMed] [Google Scholar]; Fluorosulfonylation; d Yuan Z.-L.; Wang H.-Y.; Mu X.; Chen P.-H.; Guo Y.-L.; Liu G.-S. J. Am. Chem. Soc. 2015, 137, 2468. 10.1021/ja5131676. [DOI] [PubMed] [Google Scholar]; Fluoroesterification; e Peng H.-H.; Yuan Z.-L.; Wang H.-Y.; Guo Y.-L.; Liu G. S. Chem. Sci. 2013, 4, 3172. 10.1039/c3sc50690h. [DOI] [Google Scholar]
  7. For examples of nonenantioselective intramolecular aminofluorination of alkenes, see; a Huang H.-T.; Lacy T. C.; Błachut B.; Ortiz G. X.; Wang Q. Org. Lett. 2013, 15, 1818. 10.1021/ol4003866. [DOI] [PubMed] [Google Scholar]; b Li Z.-D.; Song L.-Y.; Li C.-Z. J. Am. Chem. Soc. 2013, 135, 4640. 10.1021/ja400124t. [DOI] [PubMed] [Google Scholar]; c Wu T.; Yin G.-Y.; Liu G.-S. J. Am. Chem. Soc. 2009, 131, 16354. 10.1021/ja9076588. [DOI] [PubMed] [Google Scholar]; d Cui J.; Jia Q.; Feng R.-Z.; Liu S.-S.; He T.; Zhang C. Org. Lett. 2014, 16, 1442. 10.1021/ol500238k. [DOI] [PubMed] [Google Scholar]
  8. For selected examples of catalytic enantioselective fluorocyclization reactions of alkenes, see; a Rauniyar V.; Lackner A. D.; Hamilton G. L.; Toste F. D. Science 2011, 334, 1681. 10.1126/science.1213918. [DOI] [PubMed] [Google Scholar]; b Lozano O.; Blessley G.; Martinez del Campo T.; Thompson A. L.; Giuffredi G. T.; Bettati M.; Walker M.; Borman R.; Gouverneur V. Angew. Chem., Int. Ed. 2011, 50, 8105. 10.1002/anie.201103151. [DOI] [PubMed] [Google Scholar]; c Shunatona H. P.; Früh N.; Wang Y.-M.; Rauniyar V.; Toste F. D. Angew. Chem., Int. Ed. 2013, 52, 7724. 10.1002/anie.201302002. [DOI] [PubMed] [Google Scholar]; d Kong W.; Feige P.; de Haro T.; Nevado C. Angew. Chem., Int. Ed. 2013, 52, 2469. 10.1002/anie.201208471. [DOI] [PubMed] [Google Scholar]; e Suzuki S.; Kamo T.; Fukushi K.; Hiramatsu T.; Tokunaga E.; Dohi T.; Kita Y.; Shibata N. Chem. Sci. 2014, 5, 2754. 10.1039/c3sc53107d. [DOI] [Google Scholar]
  9. For a two-step, organocatalytic enantioselective intermolecular aminofluorination of activated alkenes, seeAppayee C.; Brenner-Moyer S. E. Org. Lett. 2010, 12, 3356. 10.1021/ol101167z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Talbot E. P. A.; Fernandes T. A.; McKenna J. M.; Toste F. D. J. Am. Chem. Soc. 2014, 136, 4101. 10.1021/ja412881j. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. For recent reports on enantioselective oxidative Heck reaction, see; a Mei T.-S.; Werner E. W.; Burckle A. J.; Sigman M. S. J. Am. Chem. Soc. 2013, 135, 6830. 10.1021/ja402916z. [DOI] [PMC free article] [PubMed] [Google Scholar]; b Werner E. W.; Mei T.-S.; Burckle A. J.; Sigman M. S. Science 2012, 338, 1455. 10.1126/science.1229208. [DOI] [PMC free article] [PubMed] [Google Scholar]; c Mei T.-S.; Patel H. H.; Sigman M. S. Nature 2014, 508, 340. 10.1038/nature13231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. For high-valent palladium chemistry, see; a Furuya T.; Kaiser H. M.; Ritter T. Angew. Chem., Int. Ed. 2008, 47, 5993. 10.1002/anie.200802164. [DOI] [PubMed] [Google Scholar]; b Ball N. D.; Sanford M. S. J. Am. Chem. Soc. 2009, 131, 3796. 10.1021/ja8054595. [DOI] [PMC free article] [PubMed] [Google Scholar]; c Furuya T.; Benitez D.; Tkatchouk E.; Strom A. E.; Tang P.; Goddard W. A. III; Ritter T. J. Am. Chem. Soc. 2010, 132, 3793. 10.1021/ja909371t. [DOI] [PMC free article] [PubMed] [Google Scholar]; d Brandt J. R.; Lee E.; Boursalian G. B.; Ritter T. Chem. Sci. 2014, 5, 169. 10.1039/C3SC52367E. [DOI] [PMC free article] [PubMed] [Google Scholar]; e Perez-Temprano M. H.; Racowski K. M.; Kampf J. W.; Sanford M. S. J. Am. Chem. Soc. 2014, 136, 4097. 10.1021/ja411433f. [DOI] [PubMed] [Google Scholar]; f For review, seeEngle K. M.; Mei T.-S.; Wang X.; Yu J.-Q. Angew. Chem., Int. Ed. 2011, 50, 1478. 10.1002/anie.201005142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. For palladium catalyzed 1,1-arylhalogenation of olefins, see; a Kalyani D.; Sanford M. S. J. Am. Chem. Soc. 2008, 130, 2150. 10.1021/ja0782798. [DOI] [PubMed] [Google Scholar]; b Kalyani D.; Satterfield A. D.; Sanford M. S. J. Am. Chem. Soc. 2010, 132, 8419. 10.1021/ja101851v. [DOI] [PMC free article] [PubMed] [Google Scholar]; For other palladium catalyzed 1,1-difunctionalization reactions of olefins, see; c Saini V.; Sigman M. S. J. Am. Chem. Soc. 2012, 134, 11372. 10.1021/ja304344h. [DOI] [PMC free article] [PubMed] [Google Scholar]; d Saini V.; Liao L.; Wang Q.; Jana R.; Sigman M. S. Org. Lett. 2013, 15, 5008. 10.1021/ol4023358. [DOI] [PMC free article] [PubMed] [Google Scholar]; e Nelson H. M.; Williams B. D.; Miro J.; Toste F. D. J. Am. Chem. Soc. 2015, 137, 3213. 10.1021/jacs.5b00344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. O’Reilly M. C.; Lindsley C. W. Tetrahedron Lett. 2013, 54, 3627.and references therein. 10.1016/j.tetlet.2013.04.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. The observance of no product derived from the 1,2-fluoroarylation of 1a is believed to be a result of the sparing solubility of Selectfluor in organic solvents. The low concentration of Selectfluor in organic solvents allows β-hydride elimination and reinsertion to form the palladium-benzyl intermediate to outcompete oxidation. A mechanism involving β-hydride elimination and reinsertion is supported by literature precedent (ref (13b)) and deuterium labeling experiments (see Supporting Information).
  16. Substrates bearing longer methylene tethers (those derived from pent-4-en-1-amine and hex-5-en-1-amine) furnished the 1,1-fluoroarylation adducts in low yield (<20%).
  17. The major byproduct in this case was the corresponding styrene derived from an oxidative Heck reaction.
  18. Substitution in the ortho-position of the phenylboronic acids (e.g., o-chlorophenyl and (o-tolyl)boronic acid) gave low yields of the desired product under both the racemic and asymmetric reaction conditions.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

ja5b07795_si_001.cif (2.1MB, cif)
ja5b07795_si_002.pdf (8.8MB, pdf)

Articles from Journal of the American Chemical Society are provided here courtesy of American Chemical Society

RESOURCES