Abstract
The structure of the capillary plexus in the gas exchange zone in the lungs of five neonates was investigated by electron microscopy and cytochemical techniques. The results show that the capillaries associated with the terminal respiratory saccules are narrow and that they generally possess two to three endothelial cells per cross section. "Seamless" and protoplasmic capillaries were not observed. A capillary plexus was located on either side of each intersaccular septum and the mesh size of this plexus was relatively large. The gas diffusion pathway in the neonatal lung was found to be very short (mean 1.84 micron). It is suggested that the layer of periodate reactive material lining the luminal surfaces of the capillary endothelial cells may have important functions in vivo.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BENNETT H. S., LUFT J. H., HAMPTON J. C. Morphological classifications of vertebrate blood capillaries. Am J Physiol. 1959 Feb;196(2):381–390. doi: 10.1152/ajplegacy.1959.196.2.381. [DOI] [PubMed] [Google Scholar]
- Bignon J., Jaubert F., Jaurand M. C. Plasma protein immunocytochemistry and polysaccharide cytochemistry at the surface of alveolar and endothelial cells in the rat lung. J Histochem Cytochem. 1976 Oct;24(10):1076–1084. doi: 10.1177/24.10.789758. [DOI] [PubMed] [Google Scholar]
- Bär T., Güldner F. H., Wolff J. R. "Seamless" endothelial cells of blood capillaries. Cell Tissue Res. 1984;235(1):99–106. doi: 10.1007/BF00213729. [DOI] [PubMed] [Google Scholar]
- Finlay-Jones J. M., Papadimitriou J. M., Barter R. A. Pulmonary hyaline membrane: light and electron microscopic study of the early stage. J Pathol. 1974 Feb;112(2):117–124. doi: 10.1002/path.1711120207. [DOI] [PubMed] [Google Scholar]
- Fung Y. C., Sobin S. S. Pulmonary alveolar blood flow. Circ Res. 1972 Apr;30(4):470–490. doi: 10.1161/01.res.30.4.470. [DOI] [PubMed] [Google Scholar]
- Gehr P., Bachofen M., Weibel E. R. The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir Physiol. 1978 Feb;32(2):121–140. doi: 10.1016/0034-5687(78)90104-4. [DOI] [PubMed] [Google Scholar]
- Meban C. An electron microscopic study of the acid mucosubstance lining the alveoli of hamster lung. Histochem J. 1972 Jan;4(1):1–8. doi: 10.1007/BF01005264. [DOI] [PubMed] [Google Scholar]
- Meban C. Thickness of the air-blood barriers in vertebrate lungs. J Anat. 1980 Sep;131(Pt 2):299–307. [PMC free article] [PubMed] [Google Scholar]
- Rambourg A., Hernandez W., Leblond C. P. Detection of complex carbohydrates in the Golgi apparatus of rat cells. J Cell Biol. 1969 Feb;40(2):395–414. doi: 10.1083/jcb.40.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thurlbeck W. M. The internal surface area of nonemphysematous lungs. Am Rev Respir Dis. 1967 May;95(5):765–773. doi: 10.1164/arrd.1967.95.5.765. [DOI] [PubMed] [Google Scholar]
- WEIBEL E. R., KNIGHT B. W. A MORPHOMETRIC STUDY ON THE THICKNESS OF THE PULMONARY AIR-BLOOD BARRIER. J Cell Biol. 1964 Jun;21:367–396. doi: 10.1083/jcb.21.3.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolff J. R., Goerz C., Bär T., Güldner F. H. Common morphogenetic aspects of various organotypic microvascular patterns. Microvasc Res. 1975 Nov;10(3):373–395. doi: 10.1016/0026-2862(75)90040-0. [DOI] [PubMed] [Google Scholar]








