Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Mar 15;90(6):2132–2136. doi: 10.1073/pnas.90.6.2132

Allosteric transition of fructose-1,6-bisphosphatase.

J Y Liang 1, Y Zhang 1, S Huang 1, W N Lipscomb 1
PMCID: PMC46039  PMID: 8384713

Abstract

Structural changes during the R-to-T transition of fructose-1,6-bisphosphatase (EC 3.1.3.11) form a hierarchy, in which structural changes at one level are supported by those at the other levels. The quaternary conformational changes involve a 17 degrees rotation between the upper and lower dimers, and a 3.4 degrees rotation between monomers in a dimer. Within monomers, the FBP domain, which remains rigid during the R-to-T transition, rotates 2.3 degrees relative to the AMP domain, which undergoes significant structural reorientations. The most important of these reorientations are the newly identified partially ordered loop residues 55-61 in the T state and reorientations of helices H1, H2, and H3. Supporting these structural changes are numerous readjustments of hydrogen bonding and van der Waals interactions throughout the entire tetrameric protein. Propagation of structural changes during the R-to-T transition relies primarily on helices H1, H2, H3, and loop 50-72. The change that begins at the AMP site causes reorientation of H1, H2, and H3 and changes of interactions across the C1-C4 (C2-C3) interface. These changes may propagate down H1, H2, H3, and loop 50-72 to affect interactions across the C1-C2 (C3-C4) and C1-C3 (C2-C4) interfaces. AMP inhibition is most probably caused by reduced metal binding affinity due to structural changes of metal ligands (Glu97, Asp118, and Asp121) in the active site. The eight-stranded beta-sheet, particularly the beta-strand B3, which connects Lys112 and Tyr113 of the AMP site with Asp118 and Asp121 of the metal site, may be responsible for communication between the AMP and active sites. Additional structural changes that support such communication include reorientation of the FBP domain and H1, H2, and H3 relative to the eight-stranded beta-sheet, and new conformations of loop 54-72 in the T state as AMP binds.

Full text

PDF
2132

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benkovic S. J., deMaine M. M. Mechanism of action of fructose 1,6-bisphosphatase. Adv Enzymol Relat Areas Mol Biol. 1982;53:45–82. doi: 10.1002/9780470122983.ch2. [DOI] [PubMed] [Google Scholar]
  2. Black W. J., Van Tol A., Fernando J., Horecker B. L. Isolation of ahighly active fructose diphosphatase from rabit muscle: its subunit structure and activation by monovalent cations. Arch Biochem Biophys. 1972 Aug;151(2):576–590. doi: 10.1016/0003-9861(72)90535-8. [DOI] [PubMed] [Google Scholar]
  3. Bone R., Springer J. P., Atack J. R. Structure of inositol monophosphatase, the putative target of lithium therapy. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10031–10035. doi: 10.1073/pnas.89.21.10031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brünger A. T., Kuriyan J., Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987 Jan 23;235(4787):458–460. doi: 10.1126/science.235.4787.458. [DOI] [PubMed] [Google Scholar]
  5. Buchanan B. B., Schürmann P., Kalberer P. P. Ferredoxin-activated fructose diphosphatase of spinach chloroplasts. Resolution of the system, properties of the alkaline fructose diphosphatase component, and physiological significance of the ferredoxin-linked activation. J Biol Chem. 1971 Oct 10;246(19):5952–5959. [PubMed] [Google Scholar]
  6. Hers H. G., Hue L. Gluconeogenesis and related aspects of glycolysis. Annu Rev Biochem. 1983;52:617–653. doi: 10.1146/annurev.bi.52.070183.003153. [DOI] [PubMed] [Google Scholar]
  7. Ke H. M., Liang J. Y., Zhang Y. P., Lipscomb W. N. Conformational transition of fructose-1,6-bisphosphatase: structure comparison between the AMP complex (T form) and the fructose 6-phosphate complex (R form). Biochemistry. 1991 May 7;30(18):4412–4420. doi: 10.1021/bi00232a007. [DOI] [PubMed] [Google Scholar]
  8. Ke H. M., Zhang Y. P., Liang J. Y., Lipscomb W. N. Crystal structure of the neutral form of fructose-1,6-bisphosphatase complexed with the product fructose 6-phosphate at 2.1-A resolution. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):2989–2993. doi: 10.1073/pnas.88.8.2989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ke H. M., Zhang Y. P., Lipscomb W. N. Crystal structure of fructose-1,6-bisphosphatase complexed with fructose 6-phosphate, AMP, and magnesium. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5243–5247. doi: 10.1073/pnas.87.14.5243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Liang J. Y., Huang S., Zhang Y., Ke H., Lipscomb W. N. Crystal structure of the neutral form of fructose 1,6-bisphosphatase complexed with regulatory inhibitor fructose 2,6-bisphosphate at 2.6-A resolution. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2404–2408. doi: 10.1073/pnas.89.6.2404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Liu F., Fromm H. J. Relationship between thiol group modification and the binding site for fructose 2,6-bisphosphate on rabbit liver fructose-1,6-bisphosphatase. J Biol Chem. 1988 Jul 15;263(20):10035–10039. [PubMed] [Google Scholar]
  12. Majumder A. L., Eisenberg F., Jr Unequivocal demonstration of fructose-1,6-bisphosphatase in mammalian brain. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3222–3225. doi: 10.1073/pnas.74.8.3222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Newsholme E. A., Crabtree B., Higgins S. J., Thornton S. D., Start C. The activities of fructose diphosphatase in flight muscles from the bumble-bee and the role of this enzyme in heat generation. Biochem J. 1972 Jun;128(1):89–97. doi: 10.1042/bj1280089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pilkis S. J., El-Maghrabi M. R., McGrane M. M., Pilkis J., Claus T. H. The role of fructose 2,6-bisphosphate in regulation of fructose-1,6-bisphosphatase. J Biol Chem. 1981 Nov 25;256(22):11489–11495. [PubMed] [Google Scholar]
  15. Pilkis S. J., El-Maghrabi M. R., Pilkis J., Claus T. Inhibition of fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate. J Biol Chem. 1981 Apr 25;256(8):3619–3622. [PubMed] [Google Scholar]
  16. Pontremoli S., Grazi E., Accorsi A. Fructose diphosphatase from rabbit liver. X. Isolation and kinetic properties of the enzyme--adenosine monophosphate complex. Biochemistry. 1968 Oct;7(10):3628–3633. doi: 10.1021/bi00850a041. [DOI] [PubMed] [Google Scholar]
  17. Pontremoli S., Melloni E., Michetti M., Salamino F., Sparatore B., Horecker B. L. On the mechanism of inhibition of fructose 1,6-bisphosphatase by fructose 2,6-bisphosphate. Arch Biochem Biophys. 1982 Oct 15;218(2):609–613. doi: 10.1016/0003-9861(82)90386-1. [DOI] [PubMed] [Google Scholar]
  18. Preiss J., Biggs M. L., Greenberg E. The effect of magnesium ion concentration on the pH optimum of the spinach leaf alkaline fructose diphosphatase. J Biol Chem. 1967 May 10;242(9):2292–2294. [PubMed] [Google Scholar]
  19. Scheffler J. E., Fromm H. J. Regulation of rabbit liver fructose-1,6-bisphosphatase by metals, nucleotides, and fructose 2,6-bisphosphate as determined from fluorescence studies. Biochemistry. 1986 Oct 21;25(21):6659–6665. doi: 10.1021/bi00369a050. [DOI] [PubMed] [Google Scholar]
  20. Tejwani G. A. Regulation of fructose-bisphosphatase activity. Adv Enzymol Relat Areas Mol Biol. 1983;54:121–194. doi: 10.1002/9780470122990.ch3. [DOI] [PubMed] [Google Scholar]
  21. Van Schaftingen E. Fructose 2,6-bisphosphate. Adv Enzymol Relat Areas Mol Biol. 1987;59:315–395. doi: 10.1002/9780470123058.ch7. [DOI] [PubMed] [Google Scholar]
  22. Van Schaftingen E., Hers H. G. Inhibition of fructose-1,6-bisphosphatase by fructose 2,6-biphosphate. Proc Natl Acad Sci U S A. 1981 May;78(5):2861–2863. doi: 10.1073/pnas.78.5.2861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Zhang Y., Liang J. Y., Huang S., Ke H., Lipscomb W. N. Crystallographic studies of the catalytic mechanism of the neutral form of fructose-1,6-bisphosphatase. Biochemistry. 1993 Feb 23;32(7):1844–1857. doi: 10.1021/bi00058a019. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES