Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Mar 15;90(6):2146–2149. doi: 10.1073/pnas.90.6.2146

A method for evaluation of activity of antagonistic analogs of growth hormone-releasing hormone in a superfusion system.

Z Rekasi 1, A V Schally 1
PMCID: PMC46042  PMID: 8460121

Abstract

Antagonistic analogs of growth hormone-releasing hormone (GHRH) are being synthesized in our laboratory for various clinical applications, including treatment of certain endocrine disorders and insulin-like growth factor I-dependent tumors. To evaluate the endocrine effect of these GHRH antagonists, a sensitive dynamic in vitro system has been developed. The concentration causing 50% inhibition (IC50) of the standard GHRH antagonist human [N-Ac-Tyr1,D-Arg2]GHRH-(1-29)-NH2 is 4.5 x 10(-8) M in our dispersed pituitary cell superfusion system. This value is 11 times less than that measured in earlier static pituitary cell cultures. This reliable dynamic system is simple, fast, and inexpensive and not only makes it possible to obtain quantitative data on the inhibitory capacity of the antagonists but also provides information about the intrinsic GHRH activity of the analog. The dynamic interactions of the GHRH antagonist, the GHRH receptors, and GH release can also be evaluated by this superfusion system. The pulsatile GH release induced by 10(-9) M human GHRH-(1-29)-NH2 was inhibited by two modes of application, preincubation and simultaneous administration of the GHRH antagonist (10(-9) to 10(-6) M). The reduction in GHRH-stimulated GH response was more pronounced when the cells were preincubated with the antagonist prior to GHRH infusion than for simultaneous application. The inhibitory effect of the antagonist was dose-dependent, temporary, and of the competitive type. GH release induced by nonspecific stimulus (100 mM potassium chloride) was not influenced by the GHRH antagonist. This sensitive dynamic in vitro system appears to be a suitable method for screening the biological activity of various GHRH antagonists and eliminates the drawbacks of static pituitary cell culture.

Full text

PDF
2146

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brazeau P., Ling N., Böhlen P., Esch F., Ying S. Y., Guillemin R. Growth hormone releasing factor, somatocrinin, releases pituitary growth hormone in vitro. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7909–7913. doi: 10.1073/pnas.79.24.7909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Coy D. H., Hocart S. J., Murphy W. A. Human growth hormone-releasing hormone analogues with much improved in vitro growth hormone-releasing potencies in rat pituitary cells. Eur J Pharmacol. 1991 Nov 5;204(2):179–185. doi: 10.1016/0014-2999(91)90703-s. [DOI] [PubMed] [Google Scholar]
  3. Coy D. H., Murphy W. A., Lance V. A., Heiman M. L. Strategies in the design of synthetic agonists and antagonists of growth hormone releasing factor. Peptides. 1986;7 (Suppl 1):49–52. doi: 10.1016/0196-9781(86)90163-4. [DOI] [PubMed] [Google Scholar]
  4. Coy D. H., Murphy W. A., Sueiras-Diaz J., Coy E. J., Lance V. A. Structure-activity studies on the N-terminal region of growth hormone releasing factor. J Med Chem. 1985 Feb;28(2):181–185. doi: 10.1021/jm00380a006. [DOI] [PubMed] [Google Scholar]
  5. Guillemin R., Brazeau P., Böhlen P., Esch F., Ling N., Wehrenberg W. B. Growth hormone-releasing factor from a human pancreatic tumor that caused acromegaly. Science. 1982 Nov 5;218(4572):585–587. doi: 10.1126/science.6812220. [DOI] [PubMed] [Google Scholar]
  6. Heiman M. L., Nekola M. V., Murphy W. A., Lance V. A., Coy D. H. An extremely sensitive in vitro model for elucidating structure-activity relationships of growth hormone-releasing factor analogs. Endocrinology. 1985 Jan;116(1):410–415. doi: 10.1210/endo-116-1-410. [DOI] [PubMed] [Google Scholar]
  7. Hocart S. J., Murphy W. A., Coy D. H. Analogues of growth hormone-releasing factor (1-29) amide containing the reduced peptide bond isostere in the N-terminal region. J Med Chem. 1990 Jul;33(7):1954–1958. doi: 10.1021/jm00169a022. [DOI] [PubMed] [Google Scholar]
  8. Lumpkin M. D., McDonald J. K. Blockade of growth hormone-releasing factor (GRF) activity in the pituitary and hypothalamus of the conscious rat with a peptidic GRF antagonist. Endocrinology. 1989 Mar;124(3):1522–1531. doi: 10.1210/endo-124-3-1522. [DOI] [PubMed] [Google Scholar]
  9. Lumpkin M. D., Mulroney S. E., Haramati A. Inhibition of pulsatile growth hormone (GH) secretion and somatic growth in immature rats with a synthetic GH-releasing factor antagonist. Endocrinology. 1989 Mar;124(3):1154–1159. doi: 10.1210/endo-124-3-1154. [DOI] [PubMed] [Google Scholar]
  10. Mulder G. H., Smelik P. G. A superfusion system technique for the study of the sites of action of glucocorticoids in the rat hypothalamus-pituitary-adrenal system in vitro. I. Pituitary cell superfusion. Endocrinology. 1977 Apr;100(4):1142–1152. doi: 10.1210/endo-100-4-1143. [DOI] [PubMed] [Google Scholar]
  11. Pollak M. N., Perdue J. F., Margolese R. G., Baer K., Richard M. Presence of somatomedin receptors on primary human breast and colon carcinomas. Cancer Lett. 1987 Dec;38(1-2):223–230. doi: 10.1016/0304-3835(87)90218-7. [DOI] [PubMed] [Google Scholar]
  12. Pollak M. N., Polychronakos C., Richard M. Insulinlike growth factor I: a potent mitogen for human osteogenic sarcoma. J Natl Cancer Inst. 1990 Feb 21;82(4):301–305. doi: 10.1093/jnci/82.4.301. [DOI] [PubMed] [Google Scholar]
  13. Pollak M., Sem A. W., Richard M., Tetenes E., Bell R. Inhibition of metastatic behavior of murine osteosarcoma by hypophysectomy. J Natl Cancer Inst. 1992 Jun 17;84(12):966–971. doi: 10.1093/jnci/84.12.966. [DOI] [PubMed] [Google Scholar]
  14. Rivier J., Spiess J., Thorner M., Vale W. Characterization of a growth hormone-releasing factor from a human pancreatic islet tumour. Nature. 1982 Nov 18;300(5889):276–278. doi: 10.1038/300276a0. [DOI] [PubMed] [Google Scholar]
  15. Robberecht P., Coy D. H., Waelbroeck M., Heiman M. L., de Neef P., Camus J. C., Christophe J. Structural requirements for the activation of rat anterior pituitary adenylate cyclase by growth hormone-releasing factor (GRF): discovery of (N-Ac-Tyr1, D-Arg2)-GRF(1-29)-NH2 as a GRF antagonist on membranes. Endocrinology. 1985 Nov;117(5):1759–1764. doi: 10.1210/endo-117-5-1759. [DOI] [PubMed] [Google Scholar]
  16. SAFFRAN M., SCHALLY A. V. The release of corticotrophin by anterior pituitary tissue in vitro. Can J Biochem Physiol. 1955 May;33(3):408–415. [PubMed] [Google Scholar]
  17. Sato K., Hotta M., Kageyama J., Chiang T. C., Hu H. Y., Dong M. H., Ling N. Synthesis and in vitro bioactivity of human growth hormone-releasing factor analogs substituted with a single D-amino acid. Biochem Biophys Res Commun. 1987 Dec 16;149(2):531–537. doi: 10.1016/0006-291x(87)90400-1. [DOI] [PubMed] [Google Scholar]
  18. Sato K., Hotta M., Kageyama J., Hu H. Y., Dong M. H., Ling N. Synthetic analogs of growth hormone-releasing factor with antagonistic activity in vitro. Biochem Biophys Res Commun. 1990 Feb 28;167(1):360–366. doi: 10.1016/0006-291x(90)91773-l. [DOI] [PubMed] [Google Scholar]
  19. Schally A. V., Coy D. H., Meyers C. A. Hypothalamic regulatory hormones. Annu Rev Biochem. 1978;47:89–128. doi: 10.1146/annurev.bi.47.070178.000513. [DOI] [PubMed] [Google Scholar]
  20. Vigh S., Schally A. V. Interaction between hypothalamic peptides in a superfused pituitary cell system. Peptides. 1984;5 (Suppl 1):241–247. doi: 10.1016/0196-9781(84)90282-1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES