Abstract
Vasoactive intestinal peptide, one of the putative neurotransmitters of non-adrenergic inhibitory nerves in human airways, is a potent relaxant of human airways in vitro. Previous in vivo studies of infused vasoactive intestinal peptide in asthmatic subjects have shown only a small bronchodilator effect, which may have been secondary to the cardiovascular effects of the peptide. The effect on airway function of infused vasoactive intestinal peptide was studied in normal subjects, who readily develop bronchodilation in response to a beta agonist. Separate experiments were designed to assess whether there is any synergy between this peptide and the beta agonist isoprenaline. Incremental doses of 1, 3, and 6 pmol/kg/min of vasoactive intestinal peptide were infused for 15 minutes. At 6 pmol/kg/min it caused a mean fall in systolic blood pressure from 108 to 88 mm Hg and a rise in heart rate from 71 to 95 beats/min. There was no significant change in specific airways conductance (sGaw) at any dose of vasoactive intestinal peptide. No significant changes were found with placebo. Isoprenaline (400 microgram) given by inhalation at the end of the infusion produced a mean increase in sGaw of 50%. Infused peptide caused no significant change in the cumulative dose-response curve for inhaled isoprenaline. The lack of effect of vasoactive intestinal peptide on airway responses in vivo may be due to rapid enzymatic breakdown of the peptide or to the fact that dosage has to be limited by the cardiovascular effects.
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barnes P. J., Bloom S. R., Dixon C. M. VIP and asthma. Lancet. 1984 Jan 14;1(8368):112–112. doi: 10.1016/s0140-6736(84)90048-5. [DOI] [PubMed] [Google Scholar]
- Barnes P. J., Dixon C. M. The effect of inhaled vasoactive intestinal peptide on bronchial reactivity to histamine in humans. Am Rev Respir Dis. 1984 Aug;130(2):162–166. doi: 10.1164/arrd.1984.130.2.162. [DOI] [PubMed] [Google Scholar]
- Barnes P. J. The third nervous system in the lung: physiology and clinical perspectives. Thorax. 1984 Aug;39(8):561–567. doi: 10.1136/thx.39.8.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cameron A. R., Johnston C. F., Kirkpatrick C. T., Kirkpatrick M. C. The quest for the inhibitory neurotransmitter in bovine tracheal smooth muscle. Q J Exp Physiol. 1983 Jul;68(3):413–426. doi: 10.1113/expphysiol.1983.sp002735. [DOI] [PubMed] [Google Scholar]
- Davis C., Kannan M. S., Jones T. R., Daniel E. E. Control of human airway smooth muscle: in vitro studies. J Appl Physiol Respir Environ Exerc Physiol. 1982 Nov;53(5):1080–1087. doi: 10.1152/jappl.1982.53.5.1080. [DOI] [PubMed] [Google Scholar]
- Dey R. D., Shannon W. A., Jr, Said S. I. Localization of VIP-immunoreactive nerves in airways and pulmonary vessels of dogs, cat, and human subjects. Cell Tissue Res. 1981;220(2):231–238. doi: 10.1007/BF00210505. [DOI] [PubMed] [Google Scholar]
- Doidge J. M., Satchell D. G. Adrenergic and non-adrenergic inhibitory nerves in mammalian airways. J Auton Nerv Syst. 1982 Mar;5(2):83–99. doi: 10.1016/0165-1838(82)90030-3. [DOI] [PubMed] [Google Scholar]
- Håkanson R., Sundler F., Moghimzadeh E., Leander S. Peptide-containing nerve fibres in the airways: distribution and functional implications. Eur J Respir Dis Suppl. 1983;131:115–140. [PubMed] [Google Scholar]
- Itoh N., Obata K., Yanaihara N., Okamoto H. Human preprovasoactive intestinal polypeptide contains a novel PHI-27-like peptide, PHM-27. Nature. 1983 Aug 11;304(5926):547–549. doi: 10.1038/304547a0. [DOI] [PubMed] [Google Scholar]
- Lundberg J. M., Fahrenkrug J., Hökfelt T., Martling C. R., Larsson O., Tatemoto K., Anggård A. Co-existence of peptide HI (PHI) and VIP in nerves regulating blood flow and bronchial smooth muscle tone in various mammals including man. Peptides. 1984 May-Jun;5(3):593–606. doi: 10.1016/0196-9781(84)90090-1. [DOI] [PubMed] [Google Scholar]
- Magistretti P. J., Schorderet M. VIP and noradrenaline act synergistically to increase cyclic AMP in cerebral cortex. Nature. 1984 Mar 15;308(5956):280–282. doi: 10.1038/308280a0. [DOI] [PubMed] [Google Scholar]
- Matsuzaki Y., Hamasaki Y., Said S. I. Vasoactive intestinal peptide: a possible transmitter of nonadrenergic relaxation of guinea pig airways. Science. 1980 Dec 12;210(4475):1252–1253. doi: 10.1126/science.6254154. [DOI] [PubMed] [Google Scholar]
- Mitchell S. J., Bloom S. R. Measurement of fasting and postprandial plasma VIP in man. Gut. 1978 Nov;19(11):1043–1048. doi: 10.1136/gut.19.11.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richardson J., Béland J. Nonadrenergic inhibitory nervous system in human airways. J Appl Physiol. 1976 Nov;41(5 Pt 1):764–771. doi: 10.1152/jappl.1976.41.5.764. [DOI] [PubMed] [Google Scholar]
- Sheppard M. N., Kurian S. S., Henzen-Logmans S. C., Michetti F., Cocchia D., Cole P., Rush R. A., Marangos P. J., Bloom S. R., Polak J. M. Neurone-specific enolase and S-100: new markers for delineating the innervation of the respiratory tract in man and other mammals. Thorax. 1983 May;38(5):333–340. doi: 10.1136/thx.38.5.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor S. M., Paré P. D., Schellenberg R. R. Cholinergic and nonadrenergic mechanisms in human and guinea pig airways. J Appl Physiol Respir Environ Exerc Physiol. 1984 Apr;56(4):958–965. doi: 10.1152/jappl.1984.56.4.958. [DOI] [PubMed] [Google Scholar]
- Uddman R., Sundler F. Vasoactive intestinal polypeptide nerves in human upper respiratory tract. ORL J Otorhinolaryngol Relat Spec. 1979;41(4):221–226. doi: 10.1159/000275461. [DOI] [PubMed] [Google Scholar]


