Skip to main content
Thorax logoLink to Thorax
. 1987 Oct;42(10):809–814. doi: 10.1136/thx.42.10.809

Comparison of the effects of inhaled ipratropium bromide and salbutamol on the bronchoconstrictor response to hypocapnic hyperventilation in normal subjects.

J P Jamison 1, P J Glover 1, W F Wallace 1
PMCID: PMC460957  PMID: 2962333

Abstract

A double blind, placebo controlled comparison was made of the effects of nebulised ipratropium bromide (0.05 and 0.5 mg) and salbutamol (0.25 and 2.5 mg) on lung function and the airway response to hyperventilation in eight normal subjects. Both agents at both doses caused similar baseline bronchodilatation, confirming the presence of resting bronchomotor tone. The overall mean increases as percentages of control were 33% in specific airway conductance (sGaw), 10% in maximal flow after expiration of 50% of vital capacity, and 3.7% in FEV1. Hypocapnia (mean end tidal carbon dioxide tension 2.2 kPa) was produced by three minutes of voluntary hyperventilation and resulted in a mean fall in sGaw of 0.49 s-1 kPa-1 (20%). After inhalation of 0.25 mg salbutamol hypocapnic hyperventilation still produced a mean fall in sGaw of 0.55 s-1 kPa-1, whereas salbutamol 2.5 mg reduced this response to 0.15 s-1 kPa-1 (6%). After both doses of ipratropium the decrease in sGaw caused by hyperventilation was similar to the control. This suggests that bronchoconstriction in response to hypocapnic hyperventilation in normal subjects is not mediated via a cholinergic reflex.

Full text

PDF
809

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. De Troyer A., Yernault J. C., Rodenstein D. Effects of vagal blockade on lung mechanics in normal man. J Appl Physiol Respir Environ Exerc Physiol. 1979 Feb;46(2):217–226. doi: 10.1152/jappl.1979.46.2.217. [DOI] [PubMed] [Google Scholar]
  2. Engelhardt A. Pharmacology and toxicology of Atrovent. Scand J Respir Dis Suppl. 1979;103:110–115. [PubMed] [Google Scholar]
  3. Guyatt A. R., Alpers J. H. Factors affecting airways conductance: a study of 752 working men. J Appl Physiol. 1968 Mar;24(3):310–316. doi: 10.1152/jappl.1968.24.3.310. [DOI] [PubMed] [Google Scholar]
  4. Hensley M. J., O'Cain C. F., McFadden E. R., Jr, Ingram R. H., Jr Distribution of bronchodilatation in normal subjects: beta agonist versus atropine. J Appl Physiol Respir Environ Exerc Physiol. 1978 Nov;45(5):778–782. doi: 10.1152/jappl.1978.45.5.778. [DOI] [PubMed] [Google Scholar]
  5. Holgate S. T., Baldwin C. J., Tattersfield A. E. beta-adrenergic agonist resistance in normal human airways. Lancet. 1977 Aug 20;2(8034):375–377. doi: 10.1016/s0140-6736(77)90304-x. [DOI] [PubMed] [Google Scholar]
  6. Ingram R. H., Jr, Wellman J. J., McFadden E. R., Jr, Mead J. Relative contributions of large and small airways to flow limitation in normal subjects before and after atropine and isoproterenol. J Clin Invest. 1977 Apr;59(4):696–703. doi: 10.1172/JCI108688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. MacNee W., Douglas N. J., Sudlow M. F. Effects of inhalation of beta-sympathomimetic and atropine-like drugs on airway calibre in normal subjects. Clin Sci (Lond) 1982 Aug;63(2):137–143. doi: 10.1042/cs0630137. [DOI] [PubMed] [Google Scholar]
  8. Macklem P. T., Woolcock A. J., Hogg J. C., Nadel J. A., Wilson N. J. Partitioning of pulmonary resistance in the dog. J Appl Physiol. 1969 Jun;26(6):798–805. doi: 10.1152/jappl.1969.26.6.798. [DOI] [PubMed] [Google Scholar]
  9. Mead J., Turner J. M., Macklem P. T., Little J. B. Significance of the relationship between lung recoil and maximum expiratory flow. J Appl Physiol. 1967 Jan;22(1):95–108. doi: 10.1152/jappl.1967.22.1.95. [DOI] [PubMed] [Google Scholar]
  10. NEWHOUSE M. T., BECKLAKE M. R., MACKLEM P. T., MCGREGOR M. EFFECT OF ALTERATIONS IN END-TIDAL CO2 TENSION ON FLOW RESISTANCE. J Appl Physiol. 1964 Jul;19:745–749. doi: 10.1152/jappl.1964.19.4.745. [DOI] [PubMed] [Google Scholar]
  11. Pakes G. E., Brogden R. N., Heel R. C., Speight T. M., Avery G. S. Ipratropium bromide: a review of its pharmacological properties and therapeutic efficacy in asthma and chronic bronchitis. Drugs. 1980 Oct;20(4):237–266. doi: 10.2165/00003495-198020040-00001. [DOI] [PubMed] [Google Scholar]
  12. Rebuck A. S., Read J. Assessment and management of severe asthma. Am J Med. 1971 Dec;51(6):788–798. doi: 10.1016/0002-9343(71)90307-x. [DOI] [PubMed] [Google Scholar]
  13. SEVERINGHAUS J. W., SWENSON E. W., FINLEY T. N., LATEGOLA M. T., WILLIAMS J. Unilateral hypoventilation produced in dogs by occluding one pulmonary artery. J Appl Physiol. 1961 Jan;16:53–60. doi: 10.1152/jappl.1961.16.1.53. [DOI] [PubMed] [Google Scholar]
  14. Sterling G. M. The mechanism of bronchoconstriction due to hypocapnia in man. Clin Sci. 1968 Apr;34(2):277–285. [PubMed] [Google Scholar]
  15. Twort C. H., Neild J. E., Cameron I. R. The effect of verapamil and inspired CO2 on the bronchoconstriction provoked by hyperventilation in normal humans. Clin Sci (Lond) 1985 Sep;69(3):361–364. doi: 10.1042/cs0690361. [DOI] [PubMed] [Google Scholar]
  16. Viljanen A. A., Viljanen B. C., Halttunen P. K., Kreus K. E. Body plethysmographic studies in non-smoking, healthy adults. Scand J Clin Lab Invest Suppl. 1982;159:35–50. [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES