Abstract
The human KAL gene is responsible for the X chromosome-linked Kallmann syndrome. A partial cDNA sequence from the chicken KAL homologue was determined and used to study expression of the KAL gene, by in situ hybridization, during chicken development, from day 6 of incubation. The KAL gene is mainly expressed in neurons of the central nervous system during the second half of embryonic life. High levels of transcript were detected in mitral neurons of the olfactory bulbs, in striatal neurons, in Purkinje cells of the cerebellum, in retinal neurons, and in isolated neurons of the brainstem and spinal cord. No expression was observed in glial cells. A low level of expression was observed in some mesenchymal derivatives. In the adult, expression is maintained or increased in several neuronal populations, especially in optic tectum and striatum. A possible role for the KAL protein in synaptogenesis at these stages is discussed. These results in the chicken embryo help to elucidate the mechanisms of anosmia and gonadotropin-releasing hormone deficiency, which define Kallmann syndrome. In addition, most of the occasional symptoms described in Kallmann syndrome patients, such as cerebellar ataxia, abnormal ocular movements, abnormal spatial visual attention, mirror movements, and renal aplasia, could be ascribed to malfunction of areas that, in the chicken, express the KAL gene.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Calof A. L., Chikaraishi D. M. Analysis of neurogenesis in a mammalian neuroepithelium: proliferation and differentiation of an olfactory neuron precursor in vitro. Neuron. 1989 Jul;3(1):115–127. doi: 10.1016/0896-6273(89)90120-7. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Chuong C. M., Edelman G. M. Alterations in neural cell adhesion molecules during development of different regions of the nervous system. J Neurosci. 1984 Sep;4(9):2354–2368. doi: 10.1523/JNEUROSCI.04-09-02354.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DE MORSIER G. Etudes sur les dysraphies crânio-encéphaliques. I. Agénésie des lobes olfactifs (télencéphaloschizis latéral) et des commissures calleuse et antérieure (télencéphaloschizis médian); la dysplasie olfacto-génitale. Schweiz Arch Neurol Psychiatr. 1954;74(1-2):309–361. [PubMed] [Google Scholar]
- Danek A., Heye B., Schroedter R. Cortically evoked motor responses in patients with Xp22.3-linked Kallmann's syndrome and in female gene carriers. Ann Neurol. 1992 Mar;31(3):299–304. doi: 10.1002/ana.410310312. [DOI] [PubMed] [Google Scholar]
- Dear T. N., Kefford R. F. The WDNM1 gene product is a novel member of the 'four-disulphide core' family of proteins. Biochem Biophys Res Commun. 1991 Apr 15;176(1):247–254. doi: 10.1016/0006-291x(91)90916-u. [DOI] [PubMed] [Google Scholar]
- Edelman G. M., Crossin K. L. Cell adhesion molecules: implications for a molecular histology. Annu Rev Biochem. 1991;60:155–190. doi: 10.1146/annurev.bi.60.070191.001103. [DOI] [PubMed] [Google Scholar]
- Ernfors P., Hallbök F., Ebendal T., Shooter E. M., Radeke M. J., Misko T. P., Persson H. Developmental and regional expression of beta-nerve growth factor receptor mRNA in the chick and rat. Neuron. 1988 Dec;1(10):983–996. doi: 10.1016/0896-6273(88)90155-9. [DOI] [PubMed] [Google Scholar]
- Franco B., Guioli S., Pragliola A., Incerti B., Bardoni B., Tonlorenzi R., Carrozzo R., Maestrini E., Pieretti M., Taillon-Miller P. A gene deleted in Kallmann's syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature. 1991 Oct 10;353(6344):529–536. doi: 10.1038/353529a0. [DOI] [PubMed] [Google Scholar]
- Hardelin J. P., Levilliers J., del Castillo I., Cohen-Salmon M., Legouis R., Blanchard S., Compain S., Bouloux P., Kirk J., Moraine C. X chromosome-linked Kallmann syndrome: stop mutations validate the candidate gene. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8190–8194. doi: 10.1073/pnas.89.17.8190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kertzman C., Robinson D. L., Sherins R. J., Schwankhaus J. D., McClurkin J. W. Abnormalities in visual spatial attention in men with mirror movements associated with isolated hypogonadotropic hypogonadism. Neurology. 1990 Jul;40(7):1057–1063. doi: 10.1212/wnl.40.7.1057. [DOI] [PubMed] [Google Scholar]
- Künzle H. Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study in Macaca fascicularis. Brain Res. 1975 May 2;88(2):195–209. doi: 10.1016/0006-8993(75)90384-4. [DOI] [PubMed] [Google Scholar]
- Legouis R., Hardelin J. P., Levilliers J., Claverie J. M., Compain S., Wunderle V., Millasseau P., Le Paslier D., Cohen D., Caterina D. The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules. Cell. 1991 Oct 18;67(2):423–435. doi: 10.1016/0092-8674(91)90193-3. [DOI] [PubMed] [Google Scholar]
- Magrassi L., Graziadei P. P. Interaction of the transplanted olfactory placode with the optic stalk and the diencephalon in Xenopus laevis embryos. Neuroscience. 1985 Jul;15(3):903–921. doi: 10.1016/0306-4522(85)90088-0. [DOI] [PubMed] [Google Scholar]
- Mugnaini E., Forstronen P. F. Ultrastructural studies on the cerebellar histogenesis. I. Differentiation of granule cells and development of glomeruli in the chick embryo. Z Zellforsch Mikrosk Anat. 1967;77(1):115–143. doi: 10.1007/BF00336702. [DOI] [PubMed] [Google Scholar]
- Murakami S., Seki T., Wakabayashi K., Arai Y. The ontogeny of luteinizing hormone-releasing hormone (LHRH) producing neurons in the chick embryo: possible evidence for migrating LHRH neurons from the olfactory epithelium expressing a highly polysialylated neural cell adhesion molecule. Neurosci Res. 1991 Nov;12(3):421–431. doi: 10.1016/0168-0102(91)90073-8. [DOI] [PubMed] [Google Scholar]
- Naftolin F., Harris G. W., Bobrow M. Effect of purified luteinizing hormone releasing factor on normal and hypogonadotrophic anosmic men. Nature. 1971 Aug 13;232(5311):496–497. doi: 10.1038/232496a0. [DOI] [PubMed] [Google Scholar]
- Norgren R. B., Jr, Lehman M. N. Neurons that migrate from the olfactory epithelium in the chick express luteinizing hormone-releasing hormone. Endocrinology. 1991 Mar;128(3):1676–1678. doi: 10.1210/endo-128-3-1676. [DOI] [PubMed] [Google Scholar]
- Rebiere A., Dainat J. Quantitative study of synapse formation in the duck olfactory bulb. J Comp Neurol. 1981 Nov 20;203(1):103–120. doi: 10.1002/cne.902030109. [DOI] [PubMed] [Google Scholar]
- Ronnekleiv O. K., Resko J. A. Ontogeny of gonadotropin-releasing hormone-containing neurons in early fetal development of rhesus macaques. Endocrinology. 1990 Jan;126(1):498–511. doi: 10.1210/endo-126-1-498. [DOI] [PubMed] [Google Scholar]
- Rupp F., Payan D. G., Magill-Solc C., Cowan D. M., Scheller R. H. Structure and expression of a rat agrin. Neuron. 1991 May;6(5):811–823. doi: 10.1016/0896-6273(91)90177-2. [DOI] [PubMed] [Google Scholar]
- Schwankhaus J. D., Currie J., Jaffe M. J., Rose S. R., Sherins R. J. Neurologic findings in men with isolated hypogonadotropic hypogonadism. Neurology. 1989 Feb;39(2 Pt 1):223–226. doi: 10.1212/wnl.39.2.223. [DOI] [PubMed] [Google Scholar]
- Schwanzel-Fukuda M., Abraham S., Crossin K. L., Edelman G. M., Pfaff D. W. Immunocytochemical demonstration of neural cell adhesion molecule (NCAM) along the migration route of luteinizing hormone-releasing hormone (LHRH) neurons in mice. J Comp Neurol. 1992 Jul 1;321(1):1–18. doi: 10.1002/cne.903210102. [DOI] [PubMed] [Google Scholar]
- Schwanzel-Fukuda M., Bick D., Pfaff D. W. Luteinizing hormone-releasing hormone (LHRH)-expressing cells do not migrate normally in an inherited hypogonadal (Kallmann) syndrome. Brain Res Mol Brain Res. 1989 Dec;6(4):311–326. doi: 10.1016/0169-328x(89)90076-4. [DOI] [PubMed] [Google Scholar]
- Schwanzel-Fukuda M., Pfaff D. W. Origin of luteinizing hormone-releasing hormone neurons. Nature. 1989 Mar 9;338(6211):161–164. doi: 10.1038/338161a0. [DOI] [PubMed] [Google Scholar]
- Tuck R. R., O'Neill B. P., Gharib H., Mulder D. W. Familial spastic paraplegia with Kallmann's syndrome. J Neurol Neurosurg Psychiatry. 1983 Jul;46(7):671–674. doi: 10.1136/jnnp.46.7.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wegenke J. D., Uehling D. T., Wear J. B., Jr, Gordon E. S., Bargman J. G., Deacon J. S., Herrmann J. P., Opitz J. M. Familial Kallmann syndrome with unilateral renal aplasia. Clin Genet. 1975 May-Jun;7(5):368–381. doi: 10.1111/j.1399-0004.1975.tb00344.x. [DOI] [PubMed] [Google Scholar]
- White B. J., Rogol A. D., Brown K. S., Lieblich J. M., Rosen S. W. The syndrome of anosmia with hypogonadotropic hypogonadism: a genetic study of 18 new families and a review. Am J Med Genet. 1983 Jul;15(3):417–435. doi: 10.1002/ajmg.1320150307. [DOI] [PubMed] [Google Scholar]
- Wirsig-Wiechmann C. R. The nervus terminalis in the chick: a FMRFamide-immunoreactive and AChE-positive nerve. Brain Res. 1990 Jul 16;523(1):175–179. doi: 10.1016/0006-8993(90)91655-z. [DOI] [PubMed] [Google Scholar]
- Wray S., Grant P., Gainer H. Evidence that cells expressing luteinizing hormone-releasing hormone mRNA in the mouse are derived from progenitor cells in the olfactory placode. Proc Natl Acad Sci U S A. 1989 Oct;86(20):8132–8136. doi: 10.1073/pnas.86.20.8132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- del Castillo I., Cohen-Salmon M., Blanchard S., Lutfalla G., Petit C. Structure of the X-linked Kallmann syndrome gene and its homologous pseudogene on the Y chromosome. Nat Genet. 1992 Dec;2(4):305–310. doi: 10.1038/ng1292-305. [DOI] [PubMed] [Google Scholar]
- von Bartheld C. S., Lindörfer H. W., Meyer D. L. The nervus terminalis also exists in cyclostomes and birds. Cell Tissue Res. 1987 Nov;250(2):431–434. doi: 10.1007/BF00219088. [DOI] [PubMed] [Google Scholar]