Skip to main content
Thorax logoLink to Thorax
. 1988 Jan;43(1):36–40. doi: 10.1136/thx.43.1.36

Effect of inhaled formyl-methionyl-leucyl-phenylalanine on airway function.

N Berend 1, M J Peters 1, C L Armour 1, J L Black 1, H E Ward 1
PMCID: PMC461089  PMID: 2965425

Abstract

Formyl-methionyl-leucyl-phenylalanine (FMLP), a synthetic, acylated tripeptide analogous to bacterial chemotactic factors, has been shown to cause bronchoconstriction in guinea pig, rabbit, and human airways in vitro. To determine whether FMLP causes bronchoconstriction in man in vivo, a preliminary study was undertaken in which five non-smokers (mean age 35 years, FEV1 94% (SEM 5%) predicted) and five smokers (mean age 34 years, FEV1 93% (6%) predicted) inhaled aerosols of FMLP. None of the subjects showed airway hyperresponsiveness to histamine (the provocative concentrations of histamine causing a fall of greater than or equal to 20% in FEV1 (PC20) were over 8 mg/ml). FMLP dissolved in 50% dimethylsulphoxide and 50% saline in concentrations of 0, 0.06, 0.12, 0.25, 0.5, 1.0, 2.0, and 4.0 mg/ml was administered to the subjects by means of a French-Rosenthal dosimeter, FEV1 being recorded after inhalation of each concentration. Dose dependent falls in FEV1 occurred in five non-smokers (geometric mean 1.76, 95% confidence limits 0.87-3.53 mg/ml) and three smokers (0.23, 0.07-0.78 mg/ml), with two smokers not responding by 20% to the highest concentration of FMLP. On a separate day the FMLP dose-response curves were repeated after nebulisation of 500 micrograms of ipratropium bromide. The PC20 FMLP in the responders more than doubled. In six additional normal subjects a histamine inhalation test was performed before and four and 24 hours after inhalation of FMLP. All subjects remained unresponsive to histamine. These results show that FMLP is a potent bronchoconstrictor in some non-asthmatic individuals in vivo and this may be important in bronchoconstriction related to infection in patients with chronic obstructive lung disease.

Full text

PDF
36

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armour C. L., Black J. L., Johnson P. R., Vincenc K. S., Berend N. Formyl peptide-induced contraction of human airways in vitro. J Appl Physiol (1985) 1986 Jan;60(1):141–146. doi: 10.1152/jappl.1986.60.1.141. [DOI] [PubMed] [Google Scholar]
  2. Berend N., Armour C. L., Black J. L. Formyl-methionyl-leucyl-phenylalanine causes bronchoconstriction in rabbits. Agents Actions. 1986 Mar;17(5-6):466–471. doi: 10.1007/BF01965515. [DOI] [PubMed] [Google Scholar]
  3. Chai H., Farr R. S., Froehlich L. A., Mathison D. A., McLean J. A., Rosenthal R. R., Sheffer A. L., Spector S. L., Townley R. G. Standardization of bronchial inhalation challenge procedures. J Allergy Clin Immunol. 1975 Oct;56(4):323–327. doi: 10.1016/0091-6749(75)90107-4. [DOI] [PubMed] [Google Scholar]
  4. Freer R. J., Day A. R., Muthukumaraswamy N., Pinon D., Wu A., Showell H. J., Becker E. L. Formyl peptide chemoattractants: a model of the receptor on rabbit neutrophils. Biochemistry. 1982 Jan 19;21(2):257–263. doi: 10.1021/bi00531a009. [DOI] [PubMed] [Google Scholar]
  5. HARRIS H. Mobilization of defensive cells in inflammatory tissue. Bacteriol Rev. 1960 Mar;24(1):3–15. doi: 10.1128/br.24.1.3-15.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hallberg D., Pernow B. Effect of substance P on various vascular beds in the dog. Acta Physiol Scand. 1975 Feb;93(2):277–285. doi: 10.1111/j.1748-1716.1975.tb05816.x. [DOI] [PubMed] [Google Scholar]
  7. Hamel R., Ford-Hutchinson A. W., Lord A., Cirino M. Bronchoconstriction induced by N-formyl-methionyl-leucyl-phenylalanine in the guinea pig; involvement of arachidonic acid metabolites. Prostaglandins. 1984 Jul;28(1):43–56. doi: 10.1016/0090-6980(84)90112-6. [DOI] [PubMed] [Google Scholar]
  8. Hook W. A., Schiffmann E., Aswanikumar S., Siraganian R. P. Histamine release by chemotactic, formyl methionine-containing peptides. J Immunol. 1976 Aug;117(2):594–596. [PubMed] [Google Scholar]
  9. Irvin C. G., Berend N., Henson P. M. Airways hyperreactivity and inflammation produced by aerosolization of human C5A des arg. Am Rev Respir Dis. 1986 Oct;134(4):777–783. doi: 10.1164/arrd.1986.134.4.777. [DOI] [PubMed] [Google Scholar]
  10. Jubiz W., Rådmark O., Malmsten C., Hansson G., Lindgren J. A., Palmblad J., Udén A. M., Samuelsson B. A novel leukotriene produced by stimulation of leukocytes with formylmethionylleucylphenylalanine. J Biol Chem. 1982 Jun 10;257(11):6106–6110. [PubMed] [Google Scholar]
  11. Ludwig J. C., McManus L. M., Clark P. O., Hanahan D. J., Pinckard R. N. Modulation of platelet-activating factor (PAF) synthesis and release from human polymorphonuclear leukocytes (PMN): role of extracellular Ca2+. Arch Biochem Biophys. 1984 Jul;232(1):102–110. doi: 10.1016/0003-9861(84)90525-3. [DOI] [PubMed] [Google Scholar]
  12. Marasco W. A., Fantone J. C., Ward P. A. Spasmogenic activity of chemotactic N-formylated oligopeptides: identity of structure--function relationships for chemotactic and spasmogenic activities. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7470–7473. doi: 10.1073/pnas.79.23.7470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Martin R. R., White A. The in vitro release of leukocyte histamine by staphylococcal antigens. J Immunol. 1969 Feb;102(2):437–441. [PubMed] [Google Scholar]
  14. Morris J. F., Koski A., Johnson L. C. Spirometric standards for healthy nonsmoking adults. Am Rev Respir Dis. 1971 Jan;103(1):57–67. doi: 10.1164/arrd.1971.103.1.57. [DOI] [PubMed] [Google Scholar]
  15. Niedel J. Detergent solubilization of the formyl peptide chemotactic receptor. Strategy based on covalent affinity labeling. J Biol Chem. 1981 Sep 10;256(17):9295–9299. [PubMed] [Google Scholar]
  16. Rossman M. D., Cassizzi A. M., Schreiber A. D., Daniele R. P. Pulmonary defense mechanisms: modulation of Fc receptor activity in alveolar macrophages and other phagocytic cells by N-formyl peptides. Am Rev Respir Dis. 1982 Jul;126(1):136–141. doi: 10.1164/arrd.1982.126.1.136. [DOI] [PubMed] [Google Scholar]
  17. Saito H., Matsuo M., Naminohira S., Sakai T., Kitagawa H., Hirata A. A. Effect of N-formyl-L-methionyl-L-leucyl-L-phenylalanine and its analogues on blood pressure. J Pharmacobiodyn. 1983 Feb;6(2):141–144. doi: 10.1248/bpb1978.6.141. [DOI] [PubMed] [Google Scholar]
  18. Schiffmann E., Showell H. V., Corcoran B. A., Ward P. A., Smith E., Becker E. L. The isolation and partial characterization of neutrophil chemotactic factors from Escherichia coli. J Immunol. 1975 Jun;114(6):1831–1837. [PubMed] [Google Scholar]
  19. Schmitt M., Painter R. G., Jesaitis A. J., Preissner K., Sklar L. A., Cochrane C. G. Photoaffinity labeling of the N-formyl peptide receptor binding site of intact human polymorphonuclear leukocytes. A label suitable for following the fate of the receptor-ligand complex. J Biol Chem. 1983 Jan 10;258(1):649–654. [PubMed] [Google Scholar]
  20. Showell H. J., Freer R. J., Zigmond S. H., Schiffmann E., Aswanikumar S., Corcoran B., Becker E. L. The structure-activity relations of synthetic peptides as chemotactic factors and inducers of lysosomal secretion for neutrophils. J Exp Med. 1976 May 1;143(5):1154–1169. doi: 10.1084/jem.143.5.1154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Simonsson B. G., Svedmyr N., Skoogh B. E., Andersson R., Bergh N. P. In vivo and in vitro studies on alpha-receptors in human airways. Potentiation with bacterial endotoxin. Scand J Respir Dis. 1972;53(4):227–236. [PubMed] [Google Scholar]
  22. Smith R. J., Iden S. S. Pharmacological modulation of chemotactic factor-elicited release of granule-associated enzymes from human neutrophils. Effects of prostaglandins, nonsteroid anti-inflammatory agents and corticosteroids. Biochem Pharmacol. 1980 Sep 1;29(17):2389–2395. doi: 10.1016/0006-2952(80)90274-9. [DOI] [PubMed] [Google Scholar]
  23. Smith R. J., Wierenga W., Iden S. S. Characteristics of N-formyl-methionyl-leucyl-phenylalanine as an inducer of lysosomal enzyme release from human neutrophils. Inflammation. 1980 Mar;4(1):73–88. doi: 10.1007/BF00914105. [DOI] [PubMed] [Google Scholar]
  24. Tanaka D. T., Grunstein M. M. Mechanisms of substance P-induced contraction of rabbit airway smooth muscle. J Appl Physiol Respir Environ Exerc Physiol. 1984 Nov;57(5):1551–1557. doi: 10.1152/jappl.1984.57.5.1551. [DOI] [PubMed] [Google Scholar]
  25. Van der Zwan J. C., Orie N. G., Kauffman H. F., Wiers P. W., de Vries K. Bronchial obstructive reactions after inhalation with endotoxin and precipitinogens of Haemophilus influenzae in patients with chronic non-specific lung disease. Clin Allergy. 1982 Nov;12(6):547–559. doi: 10.1111/j.1365-2222.1982.tb02553.x. [DOI] [PubMed] [Google Scholar]
  26. Walker W. S., Barlet R. L., Kurtz H. M. Isolation and partial characterization of a staphylococcal leukocyte cytotaxin. J Bacteriol. 1969 Mar;97(3):1005–1008. doi: 10.1128/jb.97.3.1005-1008.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ward P. A., Lepow I. H., Newman L. J. Bacterial factors chemotactic for polymorphonuclear leukocytes. Am J Pathol. 1968 Apr;52(4):725–736. [PMC free article] [PubMed] [Google Scholar]
  28. Wharton J., Polak J. M., Bloom S. R., Will J. A., Brown M. R., Pearse A. G. Substance P-like immunoreactive nerves in mammalian lung. Invest Cell Pathol. 1979 Jan-Mar;2(1):3–10. [PubMed] [Google Scholar]
  29. Wong K., Freund K. Inhibition of the n-formylmethionyl-leucyl-phenylalanine induced respiratory burst in human neutrophils by adrenergic agonists and prostaglandins of the E series. Can J Physiol Pharmacol. 1981 Sep;59(9):915–920. doi: 10.1139/y81-141. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES