Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Mar 15;90(6):2512–2516. doi: 10.1073/pnas.90.6.2512

Different genetic requirements for anterior RNA localization revealed by the distribution of Adducin-like transcripts during Drosophila oogenesis.

D Ding 1, S M Parkhurst 1, H D Lipshitz 1
PMCID: PMC46118  PMID: 7681599

Abstract

The proteins encoded by polar-localized mRNAs play an important role in cell fate specification along the anteroposterior axis of the Drosophila embryo. The only maternally synthesized mRNA known previously to be localized to the anterior cortex of both the oocyte and the early embryo is the bicoid mRNA whose localization is required to generate a homeodomain protein gradient that specifies position along the anteroposterior embryonic axis. We have identified and characterized a second mRNA that is localized to the anterior pole of the oocyte and early embryo. This mRNA encodes a Drosophila homolog of mammalian adducin, a membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. A comparison of the spatial distribution of bicoid and Adducin-like transcripts in the maternal-effect RNA-localization mutants exuperantia, swallow, and staufen indicates different genetic requirements for proper localization of these two mRNAs to the anterior pole of the oocyte and early embryo.

Full text

PDF
2512

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aït-Ahmed O., Thomas-Cavallin M., Rosset R. Isolation and characterization of a region of the Drosophila genome which contains a cluster of differentially expressed maternal genes (yema gene region). Dev Biol. 1987 Jul;122(1):153–162. doi: 10.1016/0012-1606(87)90341-1. [DOI] [PubMed] [Google Scholar]
  2. Berleth T., Burri M., Thoma G., Bopp D., Richstein S., Frigerio G., Noll M., Nüsslein-Volhard C. The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J. 1988 Jun;7(6):1749–1756. doi: 10.1002/j.1460-2075.1988.tb03004.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown N. H., Kafatos F. C. Functional cDNA libraries from Drosophila embryos. J Mol Biol. 1988 Sep 20;203(2):425–437. doi: 10.1016/0022-2836(88)90010-1. [DOI] [PubMed] [Google Scholar]
  4. Cheung H. K., Serano T. L., Cohen R. S. Evidence for a highly selective RNA transport system and its role in establishing the dorsoventral axis of the Drosophila egg. Development. 1992 Mar;114(3):653–661. doi: 10.1242/dev.114.3.653. [DOI] [PubMed] [Google Scholar]
  5. Del Sal G., Manfioletti G., Schneider C. The CTAB-DNA precipitation method: a common mini-scale preparation of template DNA from phagemids, phages or plasmids suitable for sequencing. Biotechniques. 1989 May;7(5):514–520. [PubMed] [Google Scholar]
  6. Driever W., Nüsslein-Volhard C. The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell. 1988 Jul 1;54(1):95–104. doi: 10.1016/0092-8674(88)90183-3. [DOI] [PubMed] [Google Scholar]
  7. Driever W., Siegel V., Nüsslein-Volhard C. Autonomous determination of anterior structures in the early Drosophila embryo by the bicoid morphogen. Development. 1990 Aug;109(4):811–820. doi: 10.1242/dev.109.4.811. [DOI] [PubMed] [Google Scholar]
  8. Gardner K., Bennett V. Modulation of spectrin-actin assembly by erythrocyte adducin. Nature. 1987 Jul 23;328(6128):359–362. doi: 10.1038/328359a0. [DOI] [PubMed] [Google Scholar]
  9. Gottlieb E. Messenger RNA transport and localization. Curr Opin Cell Biol. 1990 Dec;2(6):1080–1086. doi: 10.1016/0955-0674(90)90159-c. [DOI] [PubMed] [Google Scholar]
  10. Haenlin M., Roos C., Cassab A., Mohier E. Oocyte-specific transcription of fs(1)K10: a Drosophila gene affecting dorsal-ventral developmental polarity. EMBO J. 1987 Mar;6(3):801–807. doi: 10.1002/j.1460-2075.1987.tb04822.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Joshi R., Gilligan D. M., Otto E., McLaughlin T., Bennett V. Primary structure and domain organization of human alpha and beta adducin. J Cell Biol. 1991 Nov;115(3):665–675. doi: 10.1083/jcb.115.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kaiser H. W., O'Keefe E., Bennett V. Adducin: Ca++-dependent association with sites of cell-cell contact. J Cell Biol. 1989 Aug;109(2):557–569. doi: 10.1083/jcb.109.2.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lipshitz H. D. Axis specification in the Drosophila embryo. Curr Opin Cell Biol. 1991 Dec;3(6):966–975. doi: 10.1016/0955-0674(91)90115-f. [DOI] [PubMed] [Google Scholar]
  14. Macdonald P. M., Struhl G. cis-acting sequences responsible for anterior localization of bicoid mRNA in Drosophila embryos. Nature. 1988 Dec 8;336(6199):595–598. doi: 10.1038/336595a0. [DOI] [PubMed] [Google Scholar]
  15. Manseau L. J., Schüpbach T. cappuccino and spire: two unique maternal-effect loci required for both the anteroposterior and dorsoventral patterns of the Drosophila embryo. Genes Dev. 1989 Sep;3(9):1437–1452. doi: 10.1101/gad.3.9.1437. [DOI] [PubMed] [Google Scholar]
  16. Marcey D., Watkins W. S., Hazelrigg T. The temporal and spatial distribution pattern of maternal exuperantia protein: evidence for a role in establishment but not maintenance of bicoid mRNA localization. EMBO J. 1991 Dec;10(13):4259–4266. doi: 10.1002/j.1460-2075.1991.tb05004.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mossie K. G., Young M. W., Varmus H. E. Extrachromosomal DNA forms of copia-like transposable elements, F elements and middle repetitive DNA sequences in Drosophila melanogaster. Variation in cultured cells and embryos. J Mol Biol. 1985 Mar 5;182(1):31–43. doi: 10.1016/0022-2836(85)90025-7. [DOI] [PubMed] [Google Scholar]
  18. Pokrywka N. J., Stephenson E. C. Microtubules mediate the localization of bicoid RNA during Drosophila oogenesis. Development. 1991 Sep;113(1):55–66. doi: 10.1242/dev.113.1.55. [DOI] [PubMed] [Google Scholar]
  19. St Johnston D., Beuchle D., Nüsslein-Volhard C. Staufen, a gene required to localize maternal RNAs in the Drosophila egg. Cell. 1991 Jul 12;66(1):51–63. doi: 10.1016/0092-8674(91)90138-o. [DOI] [PubMed] [Google Scholar]
  20. Stephenson E. C., Chao Y. C., Fackenthal J. D. Molecular analysis of the swallow gene of Drosophila melanogaster. Genes Dev. 1988 Dec;2(12A):1655–1665. doi: 10.1101/gad.2.12a.1655. [DOI] [PubMed] [Google Scholar]
  21. Suter B., Romberg L. M., Steward R. Bicaudal-D, a Drosophila gene involved in developmental asymmetry: localized transcript accumulation in ovaries and sequence similarity to myosin heavy chain tail domains. Genes Dev. 1989 Dec;3(12A):1957–1968. doi: 10.1101/gad.3.12a.1957. [DOI] [PubMed] [Google Scholar]
  22. Tautz D., Pfeifle C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma. 1989 Aug;98(2):81–85. doi: 10.1007/BF00291041. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES