Skip to main content
Thorax logoLink to Thorax
. 1988 Jul;43(7):545–551. doi: 10.1136/thx.43.7.545

Lung function in infants with cystic fibrosis.

C S Beardsmore 1, E Bar-Yishay 1, C Maayan 1, Y Yahav 1, D Katznelson 1, S Godfrey 1
PMCID: PMC461366  PMID: 3212751

Abstract

Lung function was measured in 28 infants with cystic fibrosis and repeated in 17 of the infants during the first year of life. Thoracic gas volume (TGV) and specific airway conductance (sGaw) were measured plethysmographically and maximum forced expiratory flow at functional residual capacity (VmaxFRC) was derived from the partial expiratory flow-volume curve. At the time of the initial evaluation respiratory function was correlated with the clinical condition of the infants but not with age. There was a good correlation between sGaw and VmaxFRC when both were expressed as percentages of the predicted normal values. On the basis of the normal range for sGaw the infants were divided into two groups. Group A (n = 9), who had normal sGaw, were younger and had a lower clinical score and normal VmaxFRC and TGV values. Group B (n = 19), who had low sGaw, had increased TGV and decreased VmaxFRC. There was no correlation with age for any measure of lung function for the population as a whole. Repeat testing was undertaken at intervals in 17 representative infants. In most of these infants the relation between sGaw and VmaxFRC was maintained; there was no evidence that VmaxFRC was affected before sGaw. There was no functional evidence that the earliest changes in cystic fibrosis occur in small airways, as reflected by changes in VmaxFRC in infancy.

Full text

PDF
545

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beardsmore C. S., Godfrey S., Shani N., Maayan C., Bar-Yishay E. Airway resistance measurements throughout the respiratory cycle in infants. Respiration. 1986;49(2):81–93. doi: 10.1159/000194864. [DOI] [PubMed] [Google Scholar]
  2. Beardsmore C. S., Maayan C., Bar-Yishay E., Godfrey S. Flow-pressure looping during plethysmography in wheezy infants. Pediatr Pulmonol. 1985 Jan-Feb;1(1):27–31. doi: 10.1002/ppul.1950010108. [DOI] [PubMed] [Google Scholar]
  3. Castile R. G., Hyatt R. E., Rodarte J. R. Determinants of maximal expiratory flow and density dependence in normal humans. J Appl Physiol Respir Environ Exerc Physiol. 1980 Nov;49(5):897–904. doi: 10.1152/jappl.1980.49.5.897. [DOI] [PubMed] [Google Scholar]
  4. DUBOIS A. B., BOTELHO S. Y., BEDELL G. N., MARSHALL R., COMROE J. H., Jr A rapid plethysmographic method for measuring thoracic gas volume: a comparison with a nitrogen washout method for measuring functional residual capacity in normal subjects. J Clin Invest. 1956 Mar;35(3):322–326. doi: 10.1172/JCI103281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DUBOIS A. B., BOTELHO S. Y., COMROE J. H., Jr A new method for measuring airway resistance in man using a body plethysmograph: values in normal subjects and in patients with respiratory disease. J Clin Invest. 1956 Mar;35(3):327–335. doi: 10.1172/JCI103282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dawson S. V., Elliott E. A. Wave-speed limitation on expiratory flow-a unifying concept. J Appl Physiol Respir Environ Exerc Physiol. 1977 Sep;43(3):498–515. doi: 10.1152/jappl.1977.43.3.498. [DOI] [PubMed] [Google Scholar]
  7. Godfrey S., Bar-Yishay E., Arad I., Landau L. I., Taussig L. M. Flow-volume curves in infants with lung disease. Pediatrics. 1983 Oct;72(4):517–522. [PubMed] [Google Scholar]
  8. Godfrey S., Mearns M., Howlett G. Serial lung function studies in cystic fibrosis in the first 5 years of life. Arch Dis Child. 1978 Jan;53(1):83–85. doi: 10.1136/adc.53.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hogg J. C., Williams J., Richardson J. B., Macklem P. T., Thurlbeck W. M. Age as a factor in the distribution of lower-airway conductance and in the pathologic anatomy of obstructive lung disease. N Engl J Med. 1970 Jun 4;282(23):1283–1287. doi: 10.1056/NEJM197006042822302. [DOI] [PubMed] [Google Scholar]
  10. Lamarre A., Reilly B. J., Bryan A. C., Levison H. Early detection of pulmonary function abnormalities in cystic fibrosis. Pediatrics. 1972 Aug;50(2):291–298. [PubMed] [Google Scholar]
  11. Loughlin G. M., Cota K. A., Taussig L. M. The relationship between flow transients and bronchial lability in cystic fibrosis. Chest. 1981 Feb;79(2):206–210. doi: 10.1378/chest.79.2.206. [DOI] [PubMed] [Google Scholar]
  12. Mansell A., Dubrawsky C., Levison H., Bryan A. C., Crozier D. N. Lung elastic recoil in cystic fibrosis. Am Rev Respir Dis. 1974 Feb;109(2):190–197. doi: 10.1164/arrd.1974.109.2.190. [DOI] [PubMed] [Google Scholar]
  13. Mead J. Expiratory flow limitation: a physiologist's point of view. Fed Proc. 1980 Aug;39(10):2771–2775. [PubMed] [Google Scholar]
  14. Mellins R. B., Levin O. R., Ingram R. H., Jr, Fishman A. P. Obstructive disease of the airways in cystic fibrosis. Pediatrics. 1968 Mar;41(3):560–573. [PubMed] [Google Scholar]
  15. Mink S. N., Coalson J. J., Whitley L., Greville H., Jadue C. Pulmonary function tests in the detection of small airway obstruction in a canine model of bronchiolitis obliterans. Am Rev Respir Dis. 1984 Dec;130(6):1125–1133. doi: 10.1164/arrd.1984.130.6.1125. [DOI] [PubMed] [Google Scholar]
  16. Phelan P. D., Gracey M., Williams H. E., Anderson C. M. Ventilatory function in infants with cystic fibrosis. Physiological assessment of halation therapy. Arch Dis Child. 1969 Jun;44(235):393–400. doi: 10.1136/adc.44.235.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pride N. B., Permutt S., Riley R. L., Bromberger-Barnea B. Determinants of maximal expiratory flow from the lungs. J Appl Physiol. 1967 Nov;23(5):646–662. doi: 10.1152/jappl.1967.23.5.646. [DOI] [PubMed] [Google Scholar]
  18. Shulman D. L., Bar-Yishay E., Beardsmore C. S., Beilin B., Godfrey S. Partial forced expiratory flow-volume curves in young children during ketamine anesthesia. J Appl Physiol (1985) 1987 Jul;63(1):44–50. doi: 10.1152/jappl.1987.63.1.44. [DOI] [PubMed] [Google Scholar]
  19. Stern R. C., Boat T. F., Doershuk C. F., Tucker A. S., Primiano F. P., Jr, Matthews L. W. Course of cystic fibrosis in 95 patients. J Pediatr. 1976 Sep;89(3):406–411. doi: 10.1016/s0022-3476(76)80537-9. [DOI] [PubMed] [Google Scholar]
  20. Stocks J., Godfrey S. Specific airway conductance in relation to postconceptional age during infancy. J Appl Physiol Respir Environ Exerc Physiol. 1977 Jul;43(1):144–154. doi: 10.1152/jappl.1977.43.1.144. [DOI] [PubMed] [Google Scholar]
  21. Stocks J., Levy N. M., Godfrey S. A new apparatus for the accurate measurement of airway resistance in infancy. J Appl Physiol Respir Environ Exerc Physiol. 1977 Jul;43(1):155–159. doi: 10.1152/jappl.1977.43.1.155. [DOI] [PubMed] [Google Scholar]
  22. Taussig L. M., Landau L. I., Godfrey S., Arad I. Determinants of forced expiratory flows in newborn infants. J Appl Physiol Respir Environ Exerc Physiol. 1982 Nov;53(5):1220–1227. doi: 10.1152/jappl.1982.53.5.1220. [DOI] [PubMed] [Google Scholar]
  23. Taussig L. M. Maximal expiratory flows at functional residual capacity: a test of lung function for young children. Am Rev Respir Dis. 1977 Dec;116(6):1031–1038. doi: 10.1164/arrd.1977.116.6.1031. [DOI] [PubMed] [Google Scholar]
  24. Tepper R. S., Morgan W. J., Cota K., Wright A., Taussig L. M. Physiologic growth and development of the lung during the first year of life. Am Rev Respir Dis. 1986 Sep;134(3):513–519. doi: 10.1164/arrd.1986.134.3.513. [DOI] [PubMed] [Google Scholar]
  25. Wood R. E., Boat T. F., Doershuk C. F. Cystic fibrosis. Am Rev Respir Dis. 1976 Jun;113(6):833–878. doi: 10.1164/arrd.1976.113.6.833. [DOI] [PubMed] [Google Scholar]
  26. Wright J. L., Lawson L. M., Paré P. D., Kennedy S., Wiggs B., Hogg J. C. The detection of small airways disease. Am Rev Respir Dis. 1984 Jun;129(6):989–994. doi: 10.1164/arrd.1984.129.6.989. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES