Skip to main content
Thorax logoLink to Thorax
. 1988 Oct;43(10):777–783. doi: 10.1136/thx.43.10.777

Relationship of lung function to radiographic reading (ILO) in patients with asbestos related lung disease.

J E Cotes 1, B King 1
PMCID: PMC461507  PMID: 3206385

Abstract

The 1980 International Labour Office (ILO) classification of posteroanterior chest radiographs was used to obtain the scores for profusion of small opacities and pleural abnormalities of 172 men with confirmed or suspected disease of the lungs due to asbestos. After allowance had been made for age, stature, and smoking habit the quantitative score for area of diffuse pleural thickening seen in profile on both lateral chest walls contributed to reductions in inspiratory capacity, expiratory reserve volume, and forced expiratory flow rates. Occlusion of one or both costophrenic angles in the presence of diffuse thickening was associated with further reduction in inspiratory capacity. Profusion of small opacities was associated with a reduction in transfer factor. Diffuse pleural thickening and occlusion of costophrenic angles were associated with relatively low values for the forced expiratory flow rates (MEF50FVC) and FEV1/FVC, whereas small opacities were associated with relatively high values. Thus overall increased, normal, or reduced values of MEF50FVC and FEV1/FVC might occur, depending on the distribution of the radiographic abnormalities. The findings contribute to the validation of the ILO pleural scores; those for diffuse pleural thickening and occlusion of costophrenic angles should be used jointly with the scores for profusion of parenchymal small opacities in interpreting the lung function of persons exposed to asbestos.

Full text

PDF
777

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arzt G. H., Pirtkien R., Rosenthal H. Review of lung function data in 195 patients with asbestosis of the lung. Int Arch Occup Environ Health. 1980 Jan;45(1):63–79. doi: 10.1007/BF00378097. [DOI] [PubMed] [Google Scholar]
  2. Barrowcliffe M. P., Jones J. G. Solute permeability of the alveolar capillary barrier. Thorax. 1987 Jan;42(1):1–10. doi: 10.1136/thx.42.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Becklake M. R., Fournier-Massey G., McDonald J. C., Siemiatycki J., Rossiter C. E. Lung function in relation to chest radiographic changes in Quebec asbestos workers. I. Methods, results and conclusions. Bull Physiopathol Respir (Nancy) 1970 Jul-Sep;6(3):637–659. [PubMed] [Google Scholar]
  4. Britton M. G. Asbestos pleural disease. Br J Dis Chest. 1982 Jan;76(1):1–10. [PubMed] [Google Scholar]
  5. Chinn D. J., Naruse Y., Cotes J. E. Accuracy of gas analysis in lung function laboratories. Thorax. 1986 Feb;41(2):133–137. doi: 10.1136/thx.41.2.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Durnin J. V., Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr. 1974 Jul;32(1):77–97. doi: 10.1079/bjn19740060. [DOI] [PubMed] [Google Scholar]
  7. Feldman H. A., Brain J. D., Harbison M. L. Adjusting for confounded variables: pulmonary function and smoking in a special population. Environ Res. 1987 Jun;43(1):251–266. doi: 10.1016/s0013-9351(87)80076-2. [DOI] [PubMed] [Google Scholar]
  8. Guz A. Does carbon dioxide excite ventilation by stimulating receptors within the lungs of mammals? Am Rev Respir Dis. 1977 Jun;115(6 Pt 2):239–243. doi: 10.1164/arrd.1977.115.S.239. [DOI] [PubMed] [Google Scholar]
  9. Harries P. G., Mackenzie F. A., Sheers G., Kemp J. H., Oliver T. P., Wright D. S. Radiological survey of men exposed to asbestos in naval dockyards. Br J Ind Med. 1972 Jul;29(3):274–279. doi: 10.1136/oem.29.3.274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. JONES R. S., MEADE F. A theoretical and experimental analysis of anomalies in the estimation of pulmonary diffusing capacity by the single breath method. Q J Exp Physiol Cogn Med Sci. 1961 Apr;46:131–143. doi: 10.1113/expphysiol.1961.sp001525. [DOI] [PubMed] [Google Scholar]
  11. Kreel L. Computer tomography of the thorax. Radiol Clin North Am. 1978 Dec;16(3):575–584. [PubMed] [Google Scholar]
  12. Leathart G. L. Pulmonary function tests in asbestos workers. Trans Soc Occup Med. 1968 Apr;18(2):49–55. doi: 10.1093/occmed/18.1.49. [DOI] [PubMed] [Google Scholar]
  13. McLoud T. C., Woods B. O., Carrington C. B., Epler G. R., Gaensler E. A. Diffuse pleural thickening in an asbestos-exposed population: prevalence and causes. AJR Am J Roentgenol. 1985 Jan;144(1):9–18. doi: 10.2214/ajr.144.1.9. [DOI] [PubMed] [Google Scholar]
  14. Wright P. H., Hanson A., Kreel L., Capel L. H. Respiratory function changes after asbestos pleurisy. Thorax. 1980 Jan;35(1):31–36. doi: 10.1136/thx.35.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Yoshimura H., Hatakeyama M., Otsuji H., Maeda M., Ohishi H., Uchida H., Kasuga H., Katada H., Narita N., Mikami R. Pulmonary asbestosis: CT study of subpleural curvilinear shadow. Work in progress. Radiology. 1986 Mar;158(3):653–658. doi: 10.1148/radiology.158.3.3945733. [DOI] [PubMed] [Google Scholar]
  16. Zitting A., Huuskonen M. S., Alanko K., Mattsson T. Radiographic and physiological findings in patients with asbestosis. Scand J Work Environ Health. 1978 Dec;4(4):275–283. doi: 10.5271/sjweh.2698. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES