Skip to main content
Thorax logoLink to Thorax
. 1989 Jan;44(1):28–35. doi: 10.1136/thx.44.1.28

Beta adrenoceptor binding and induced relaxation in airway smooth muscle from patients with chronic airflow obstruction.

C J van Koppen 1, J F de Miranda 1, A J Beld 1, C L van Herwaarden 1, J W Lammers 1, C A van Ginneken 1
PMCID: PMC461660  PMID: 2538944

Abstract

Beta adrenoceptor function in central airway smooth muscle of patients with chronic airflow obstruction was investigated by radioligand binding studies and isoprenaline relaxation experiments. Receptor characteristics were determined in tracheal smooth muscle preparations obtained at necropsy from 12 patients and in bronchial tissue obtained at thoracototomy from 21 patients with chronic airflow obstruction. Receptor characteristics were compared with those obtained in airway tissue preparations from 65 control subjects without chronic airflow obstruction. The number of beta adrenoceptors, their binding affinity for the radioligand [125I]-(-)-cyanopindolol, and the tissue binding characteristics of isoprenaline were similar in tissue from patients with chronic airflow obstruction and from control subjects. Isoprenaline induced relaxation of tracheal smooth muscle without precontraction by methacholine showed slightly (though not significantly) less sensitivity to isoprenaline in patients with chronic airflow obstruction than in control subjects (mean (SEM) pD2--the negative logarithm of the concentration producing 50% relaxation--6.32 (0.16) v 6.62 (0.15)). The same pattern of pD2 values was found in segmental bronchial strips without precontraction by methacholine (chronic airflow obstruction 6.55 (0.27), control 7.14 (0.12)). Isoprenaline relaxation in segmental bronchial strips when contracted maximally was significantly less in the patients with airflow obstruction than in the control subjects (pD2 value 5.99 (0.18) v 6.45 (0.07)). These results suggest that beta adrenoceptors in airway smooth muscle of patients with chronic airflow obstruction are not abnormal in number or in binding affinity but that there is less effective coupling between components of the relaxant system distal to the beta adrenoceptor. The possibility that the reduced isoprenaline sensitivity is a consequence of previous bronchodilator treatment cannot be excluded.

Full text

PDF
28

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes P. J., Dollery C. T., MacDermot J. Increased pulmonary alpha-adrenergic and reduced beta-adrenergic receptors in experimental asthma. Nature. 1980 Jun 19;285(5766):569–571. doi: 10.1038/285569a0. [DOI] [PubMed] [Google Scholar]
  2. Boxenbaum H. G., Riegelman S., Elashoff R. M. Statistical estimations in pharmacokinetics. J Pharmacokinet Biopharm. 1974 Apr;2(2):123–148. doi: 10.1007/BF01061504. [DOI] [PubMed] [Google Scholar]
  3. Carstairs J. R., Nimmo A. J., Barnes P. J. Autoradiographic visualization of beta-adrenoceptor subtypes in human lung. Am Rev Respir Dis. 1985 Sep;132(3):541–547. doi: 10.1164/arrd.1985.132.3.541. [DOI] [PubMed] [Google Scholar]
  4. Cerrina J., Le Roy Ladurie M., Labat C., Raffestin B., Bayol A., Brink C. Comparison of human bronchial muscle responses to histamine in vivo with histamine and isoproterenol agonists in vitro. Am Rev Respir Dis. 1986 Jul;134(1):57–61. doi: 10.1164/arrd.1986.134.1.57. [DOI] [PubMed] [Google Scholar]
  5. Kaukel E., Rieckenberg B. Partial beta-adrenergic receptor blockade in experimental bronchial asthma. Biochem Biophys Res Commun. 1980 Oct 31;96(4):1626–1632. doi: 10.1016/0006-291x(80)91360-1. [DOI] [PubMed] [Google Scholar]
  6. Mita H., Yui Y., Suzuki M., Yasueda H., Shida T. Effect of Bordetella pertussis on alpha 1 and beta-adrenergic and cholinergic muscarinic receptors in guinea pig lung membranes. Int Arch Allergy Appl Immunol. 1982;69(2):169–173. doi: 10.1159/000233166. [DOI] [PubMed] [Google Scholar]
  7. RESTREPO G. L., HEARD B. E. MUCOUS GLAND ENLARGEMENT IN CHRONIC BRONCHITIS: EXTENT OF ENLARGEMENT IN THE TRACHEO-BRONCHIAL TREE. Thorax. 1963 Dec;18:334–339. doi: 10.1136/thx.18.4.334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Samuelson W. M., Davies A. O. Hydrocortisone-induced reversal of beta-adrenergic receptor uncoupling. Am Rev Respir Dis. 1984 Dec;130(6):1023–1026. doi: 10.1164/arrd.1984.130.6.1023. [DOI] [PubMed] [Google Scholar]
  9. Schreurs A. J., Nijkamp F. P. Haemophilus influenzae induced loss of lung beta-adrenoceptor binding sites and modulation by changes in peripheral catecholaminergic input. Eur J Pharmacol. 1982 Jan 22;77(2-3):95–102. doi: 10.1016/0014-2999(82)90002-4. [DOI] [PubMed] [Google Scholar]
  10. Stiles G. L., Caron M. G., Lefkowitz R. J. Beta-adrenergic receptors: biochemical mechanisms of physiological regulation. Physiol Rev. 1984 Apr;64(2):661–743. doi: 10.1152/physrev.1984.64.2.661. [DOI] [PubMed] [Google Scholar]
  11. Taki F., Takagi K., Satake T., Sugiyama S., Ozawa T. The role of phospholipase in reduced beta-adrenergic responsiveness in experimental asthma. Am Rev Respir Dis. 1986 Mar;133(3):362–366. doi: 10.1164/arrd.1986.133.3.362. [DOI] [PubMed] [Google Scholar]
  12. Taylor S. M., Paré P. D., Armour C. L., Hogg J. C., Schellenberg R. R. Airway reactivity in chronic obstructive pulmonary disease. Failure of in vivo methacholine responsiveness to correlate with cholinergic, adrenergic, or nonadrenergic responses in vitro. Am Rev Respir Dis. 1985 Jul;132(1):30–35. doi: 10.1164/arrd.1985.132.1.30. [DOI] [PubMed] [Google Scholar]
  13. Torphy T. J., Rinard G. A., Rietow M. G., Mayer S. E. Functional antagonism in canine tracheal smooth muscle: inhibition by methacholine of the mechanical and biochemical responses to isoproterenol. J Pharmacol Exp Ther. 1983 Dec;227(3):694–699. [PubMed] [Google Scholar]
  14. van Koppen C. J., Hermanussen M. W., Verrijp K. N., Rodrigues de Miranda J. F., Beld A. J., Lammers J. W., van Ginneken C. A. Beta-adrenoceptors in human tracheal smooth muscle: characteristics of binding and relaxation. Life Sci. 1987 Jun 29;40(26):2561–2570. doi: 10.1016/0024-3205(87)90079-8. [DOI] [PubMed] [Google Scholar]
  15. van Koppen C. J., Rodrigues de Miranda J. F., Beld A. J., Hermanussen M. W., Lammers J. W., van Ginneken C. A. Characterization of the muscarinic receptor in human tracheal smooth muscle. Naunyn Schmiedebergs Arch Pharmacol. 1985 Nov;331(2-3):247–252. doi: 10.1007/BF00634245. [DOI] [PubMed] [Google Scholar]
  16. van Koppen C. J., Siero H. L., Rodrigues de Miranda J. F., Beld A. J., Ariëns E. J. Simultaneous assay of muscarinic and beta-adrenergic receptors using a double isotope technique. Biochem Biophys Res Commun. 1984 Apr 30;120(2):665–669. doi: 10.1016/0006-291x(84)91307-x. [DOI] [PubMed] [Google Scholar]
  17. van den Brink F. G. The model of functional interaction. II. Experimental verification of a new model: the antagonism of beta-adrenoceptor stimulants and other agonists. Eur J Pharmacol. 1973 Jun;22(3):279–286. doi: 10.1016/0014-2999(73)90027-7. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES