Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Apr 1;90(7):2764–2768. doi: 10.1073/pnas.90.7.2764

Alteration of the cleavage distance of Fok I restriction endonuclease by insertion mutagenesis.

L Li 1, S Chandrasegaran 1
PMCID: PMC46176  PMID: 8464886

Abstract

Fok I restriction endonuclease recognizes the nonpalindromic pentadeoxyribonucleotide 5'-GGATG-3'.5'-CATCC-3' in duplex DNA and cleaves 9 and 13 nucleotides away from the recognition site. Recently, we reported the presence of two distinct and separable protein domains within this enzyme--one for the sequence-specific recognition and the other for endonuclease activity. Here, we report the construction of two insertion mutants of Fok I endonuclease. The mutant enzymes were purified, and their cleavage properties were characterized. The mutants have the same DNA sequence specificity as the wild-type enzyme. However, compared with the wild-type enzyme, they cleave one nucleotide further away from the recognition site on both strands of the DNA substrates. Thus, it is possible to alter the cleavage distance of Fok I by protein engineering.

Full text

PDF
2764

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bassing C. H., Kim Y. G., Li L., Chandrasegaran S. Overproduction, purification and characterization of M.HinfI methyltransferase and its deletion mutant. Gene. 1992 Apr 1;113(1):83–88. doi: 10.1016/0378-1119(92)90672-c. [DOI] [PubMed] [Google Scholar]
  2. Kaczorowski T., Skowron P., Podhajska A. J. Purification and characterization of the FokI restriction endonuclease. Gene. 1989 Aug 15;80(2):209–216. doi: 10.1016/0378-1119(89)90285-0. [DOI] [PubMed] [Google Scholar]
  3. Kim S. C., Podhajska A. J., Szybalski W. Cleaving DNA at any predetermined site with adapter-primers and class-IIS restriction enzymes. Science. 1988 Apr 22;240(4851):504–506. doi: 10.1126/science.2833816. [DOI] [PubMed] [Google Scholar]
  4. Kita K., Kotani H., Hiraoka N., Nakamura T., Yonaha K. Overproduction and crystallization of FokI restriction endonuclease. Nucleic Acids Res. 1989 Nov 11;17(21):8741–8753. doi: 10.1093/nar/17.21.8741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kita K., Kotani H., Ohta H., Yanase H., Kato N. StsI, a new FokI isoschizomer from Streptococcus sanguis 54, cleaves 5' GGATG(N)10/14 3'. Nucleic Acids Res. 1992 Feb 11;20(3):618–618. doi: 10.1093/nar/20.3.618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kita K., Kotani H., Sugisaki H., Takanami M. The fokI restriction-modification system. I. Organization and nucleotide sequences of the restriction and modification genes. J Biol Chem. 1989 Apr 5;264(10):5751–5756. [PubMed] [Google Scholar]
  7. Kita K., Suisha M., Kotani H., Yanase H., Kato N. Cloning and sequence analysis of the StsI restriction-modification gene: presence of homology to FokI restriction-modification enzymes. Nucleic Acids Res. 1992 Aug 25;20(16):4167–4172. doi: 10.1093/nar/20.16.4167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Landt O., Grunert H. P., Hahn U. A general method for rapid site-directed mutagenesis using the polymerase chain reaction. Gene. 1990 Nov 30;96(1):125–128. doi: 10.1016/0378-1119(90)90351-q. [DOI] [PubMed] [Google Scholar]
  9. Li L., Wu L. P., Chandrasegaran S. Functional domains in Fok I restriction endonuclease. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4275–4279. doi: 10.1073/pnas.89.10.4275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Looney M. C., Moran L. S., Jack W. E., Feehery G. R., Benner J. S., Slatko B. E., Wilson G. G. Nucleotide sequence of the FokI restriction-modification system: separate strand-specificity domains in the methyltransferase. Gene. 1989 Aug 15;80(2):193–208. doi: 10.1016/0378-1119(89)90284-9. [DOI] [PubMed] [Google Scholar]
  11. Nwankwo D., Wilson G. Cloning of two type II methylase genes that recognise asymmetric nucleotide sequences: FokI and HgaI. Mol Gen Genet. 1987 Oct;209(3):570–574. doi: 10.1007/BF00331164. [DOI] [PubMed] [Google Scholar]
  12. Podhajska A. J., Szybalski W. Conversion of the FokI endonuclease to a universal restriction enzyme: cleavage of phage M13mp7 DNA at predetermined sites. Gene. 1985;40(2-3):175–182. doi: 10.1016/0378-1119(85)90040-x. [DOI] [PubMed] [Google Scholar]
  13. Price C., Lingner J., Bickle T. A., Firman K., Glover S. W. Basis for changes in DNA recognition by the EcoR124 and EcoR124/3 type I DNA restriction and modification enzymes. J Mol Biol. 1989 Jan 5;205(1):115–125. doi: 10.1016/0022-2836(89)90369-0. [DOI] [PubMed] [Google Scholar]
  14. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Skoglund C. M., Smith H. O., Chandrasegaran S. Construction of an efficient overproducer clone of HinfI restriction endonuclease using the polymerase chain reaction. Gene. 1990 Mar 30;88(1):1–5. doi: 10.1016/0378-1119(90)90052-s. [DOI] [PubMed] [Google Scholar]
  16. Sugisaki H., Kanazawa S. New restriction endonucleases from Flavobacterium okeanokoites (FokI) and Micrococcus luteus (MluI). Gene. 1981 Dec;16(1-3):73–78. doi: 10.1016/0378-1119(81)90062-7. [DOI] [PubMed] [Google Scholar]
  17. Szybalski W., Kim S. C., Hasan N., Podhajska A. J. Class-IIS restriction enzymes--a review. Gene. 1991 Apr;100:13–26. doi: 10.1016/0378-1119(91)90345-c. [DOI] [PubMed] [Google Scholar]
  18. Szybalski W. Universal restriction endonucleases: designing novel cleavage specificities by combining adapter oligodeoxynucleotide and enzyme moieties. Gene. 1985;40(2-3):169–173. doi: 10.1016/0378-1119(85)90039-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES