Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Apr 1;90(7):2803–2806. doi: 10.1073/pnas.90.7.2803

Chemical suppression of a subpopulation of primitive hematopoietic progenitor cells: 1,3-butadiene produces a hematopoietic defect similar to steel or white spotted mutations in mice.

D B Colagiovanni 1, W S Stillman 1, R D Irons 1
PMCID: PMC46184  PMID: 7681989

Abstract

Chronic exposure of mice to 1,3-butadiene produces a macrocytic-megaloblastic anemia, thymic hypoplasia, and an increased incidence of T-cell lymphoma/leukemia. This is reminiscent of pathologies observed in mice bearing mutations at the W and Sl loci, which are deficient in c-kit and c-kit ligand (CKL), respectively. The influence of 3,4-epoxybutene (EB), the primary metabolite of 1,3-butadiene, on the colony-forming response of hematopoietic progenitor cells (HPCs) from C57BL/6, Sl, and W mice was investigated in order to elucidate the role of altered HPC regulation in the pathogenesis of 1,3-butadiene toxicity. EB pretreatment suppressed interleukin 3 colony formation and abrogated CKL synergism of the granulocyte-macrophage/colony-stimulating factor (GM-CSF) response in C57BL/6 cells, had no effect on colony formation induced by GM-CSF or granulocyte/colony-stimulating factor (G-CSF) alone, and failed to suppress CKL-induced synergism of the G-CSF response. Experiments conducted with cells from Sl and W mice revealed that they lack the same primitive HPC targeted by EB. EB pretreatment in vitro and butadiene exposure in vivo mimic hematopoietic defects seen in W and Sl mice, suggesting that the pleotypic pathologies encountered in these murine models may be largely due to a common defect in primitive HPCs. Susceptibility to EB appears to define a functional subpopulation of primitive HPCs and illustrates that differences observed in the susceptibility of specific cytokine responses to chemical/drug exposure may provide a valuable tool for characterizing functional subpopulations of HPCs.

Full text

PDF
2803

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asamoto H., Mandel T. E. Thymus in mice bearing the Steel mutation. Morphologic studies on fetal, neonatal, organ-cultured, and grafted fetal thymus. Lab Invest. 1981 Nov;45(5):418–426. [PubMed] [Google Scholar]
  2. Bodine D. M., Orlic D., Birkett N. C., Seidel N. E., Zsebo K. M. Stem cell factor increases colony-forming unit-spleen number in vitro in synergy with interleukin-6, and in vivo in Sl/Sld mice as a single factor. Blood. 1992 Feb 15;79(4):913–919. [PubMed] [Google Scholar]
  3. Catlett J. P., Leftwich J. A., Westin E. H., Grant S., Huff T. F. c-kit expression by CD34+ bone marrow progenitors and inhibition of response to recombinant human interleukin-3 following exposure to c-kit antisense oligonucleotides. Blood. 1991 Dec 15;78(12):3186–3191. [PubMed] [Google Scholar]
  4. Chabot B., Stephenson D. A., Chapman V. M., Besmer P., Bernstein A. The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature. 1988 Sep 1;335(6185):88–89. doi: 10.1038/335088a0. [DOI] [PubMed] [Google Scholar]
  5. Elfarra A. A., Duescher R. J., Pasch C. M. Mechanisms of 1,3-butadiene oxidations to butadiene monoxide and crotonaldehyde by mouse liver microsomes and chloroperoxidase. Arch Biochem Biophys. 1991 Apr;286(1):244–251. doi: 10.1016/0003-9861(91)90036-i. [DOI] [PubMed] [Google Scholar]
  6. Gibson F. M., Bagnara M., Ioannidou E., Gordon-Smith E. C. Interaction of granulocyte-macrophage colony-stimulating factor and interleukin 3 in human long-term bone marrow culture. Exp Hematol. 1992 Feb;20(2):235–240. [PubMed] [Google Scholar]
  7. Ikebuchi K., Clark S. C., Ihle J. N., Souza L. M., Ogawa M. Granulocyte colony-stimulating factor enhances interleukin 3-dependent proliferation of multipotential hemopoietic progenitors. Proc Natl Acad Sci U S A. 1988 May;85(10):3445–3449. doi: 10.1073/pnas.85.10.3445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ikuta K., Ingolia D. E., Friedman J., Heimfeld S., Weissman I. L. Mouse hematopoietic stem cells and the interaction of c-kit receptor and steel factor. Int J Cell Cloning. 1991 Sep;9(5):451–460. doi: 10.1002/stem.1991.5530090503. [DOI] [PubMed] [Google Scholar]
  9. Irons R. D., Smith C. N., Stillman W. S., Shah R. S., Steinhagen W. H., Leiderman L. J. Macrocytic-megaloblastic anemia in male B6C3F1 mice following chronic exposure to 1,3-butadiene. Toxicol Appl Pharmacol. 1986 Mar 30;83(1):95–100. doi: 10.1016/0041-008x(86)90326-1. [DOI] [PubMed] [Google Scholar]
  10. Irons R. D., Smith C. N., Stillman W. S., Shah R. S., Steinhagen W. H., Leiderman L. J. Macrocytic-megaloblastic anemia in male NIH Swiss mice following repeated exposure to 1,3-butadiene. Toxicol Appl Pharmacol. 1986 Sep 30;85(3):450–455. doi: 10.1016/0041-008x(86)90352-2. [DOI] [PubMed] [Google Scholar]
  11. Irons R. D., Stillman W. S., Cloyd M. W. Selective activation of endogenous ecotropic retrovirus in hematopoietic tissues of B6C3F1 mice during the preleukemic phase of 1,3-butadiene exposure. Virology. 1987 Dec;161(2):457–462. doi: 10.1016/0042-6822(87)90139-5. [DOI] [PubMed] [Google Scholar]
  12. Irons R. D., Stillman W. S., Colagiovanni D. B., Henry V. A. Synergistic action of the benzene metabolite hydroquinone on myelopoietic stimulating activity of granulocyte/macrophage colony-stimulating factor in vitro. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3691–3695. doi: 10.1073/pnas.89.9.3691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Koike K., Ogawa M., Ihle J. N., Miyake T., Shimizu T., Miyajima A., Yokota T., Arai K. Recombinant murine granulocyte-macrophage (GM) colony-stimulating factor supports formation of GM and multipotential blast cell colonies in culture: comparison with the effects of interleukin-3. J Cell Physiol. 1987 Jun;131(3):458–464. doi: 10.1002/jcp.1041310319. [DOI] [PubMed] [Google Scholar]
  14. Leary A. G., Yang Y. C., Clark S. C., Gasson J. C., Golde D. W., Ogawa M. Recombinant gibbon interleukin 3 supports formation of human multilineage colonies and blast cell colonies in culture: comparison with recombinant human granulocyte-macrophage colony-stimulating factor. Blood. 1987 Nov;70(5):1343–1348. [PubMed] [Google Scholar]
  15. Leary A. G., Zeng H. Q., Clark S. C., Ogawa M. Growth factor requirements for survival in G0 and entry into the cell cycle of primitive human hemopoietic progenitors. Proc Natl Acad Sci U S A. 1992 May 1;89(9):4013–4017. doi: 10.1073/pnas.89.9.4013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Leiderman L. J., Stillman W. S., Shah R. S., Steinhagen W. H., Irons R. D. Altered hematopoietic stem cell development in male B6C3F1 mice following exposure to 1,3-butadiene. Exp Mol Pathol. 1986 Feb;44(1):50–56. doi: 10.1016/0014-4800(86)90032-8. [DOI] [PubMed] [Google Scholar]
  17. MCCULLOCH E. A., SIMINOVITCH L., TILL J. E. SPLEEN-COLONY FORMATION IN ANEMIC MICE OF GENOTYPE WW. Science. 1964 May 15;144(3620):844–846. doi: 10.1126/science.144.3620.844. [DOI] [PubMed] [Google Scholar]
  18. Malvoisin E., Mercier M., Roberfroid M. Enzymatic hydration of butadiene monoxide and its importance in the metabolism of butadiene. Adv Exp Med Biol. 1981;136(Pt A):437–444. doi: 10.1007/978-1-4757-0674-1_32. [DOI] [PubMed] [Google Scholar]
  19. Malvoisin E., Roberfroid M. Hepatic microsomal metabolism of 1,3-butadiene. Xenobiotica. 1982 Feb;12(2):137–144. doi: 10.3109/00498258209046787. [DOI] [PubMed] [Google Scholar]
  20. McNiece I. K., Langley K. E., Zsebo K. M. Recombinant human stem cell factor synergises with GM-CSF, G-CSF, IL-3 and epo to stimulate human progenitor cells of the myeloid and erythroid lineages. Exp Hematol. 1991 Mar;19(3):226–231. [PubMed] [Google Scholar]
  21. Metcalf D., Nicola N. A. Direct proliferative actions of stem cell factor on murine bone marrow cells in vitro: effects of combination with colony-stimulating factors. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6239–6243. doi: 10.1073/pnas.88.14.6239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Murphy E. D. Effects of mutant steel alleles on leukemogenesis and life-span in the mouse. J Natl Cancer Inst. 1977 Jan;58(1):107–110. doi: 10.1093/jnci/58.1.107. [DOI] [PubMed] [Google Scholar]
  23. Ogawa M., Matsuzaki Y., Nishikawa S., Hayashi S., Kunisada T., Sudo T., Kina T., Nakauchi H., Nishikawa S. Expression and function of c-kit in hemopoietic progenitor cells. J Exp Med. 1991 Jul 1;174(1):63–71. doi: 10.1084/jem.174.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Okada S., Nakauchi H., Nagayoshi K., Nishikawa S., Nishikawa S., Miura Y., Suda T. Enrichment and characterization of murine hematopoietic stem cells that express c-kit molecule. Blood. 1991 Oct 1;78(7):1706–1712. [PubMed] [Google Scholar]
  25. Reynafarje C. Humoral regulation of the erythropoietic depression of high altitude polycythemic subjects after return to sea level. Ann N Y Acad Sci. 1968 Mar 29;149(1):475–485. [PubMed] [Google Scholar]
  26. Ruscetti F. W., Boggs D. R., Torok B. J., Boggs S. S. Reduced blood and marrow neutrophils and granulocytic colony-forming cells in S1/S1d mice. Proc Soc Exp Biol Med. 1976 Jul;152(3):398–402. doi: 10.3181/00379727-152-39405. [DOI] [PubMed] [Google Scholar]
  27. Russell E. S. Hereditary anemias of the mouse: a review for geneticists. Adv Genet. 1979;20:357–459. [PubMed] [Google Scholar]
  28. Soloff R. S., Dempsey D., Jennings S. R., Wolcott R. M., Chervenak R. Characterization of the progeny of pre-T cells maintained in vitro by IL-3: appearance in the periphery and V beta utilization in vivo. Cell Immunol. 1991 Jun;135(1):132–142. doi: 10.1016/0008-8749(91)90260-i. [DOI] [PubMed] [Google Scholar]
  29. Thurmond L. M., Lauer L. D., House R. V., Stillman W. S., Irons R. D., Steinhagen W. H., Dean J. H. Effect of short-term inhalation exposure to 1,3-butadiene on murine immune functions. Toxicol Appl Pharmacol. 1986 Nov;86(2):170–179. doi: 10.1016/0041-008x(86)90047-5. [DOI] [PubMed] [Google Scholar]
  30. Tsuji K., Zsebo K. M., Ogawa M. Enhancement of murine blast cell colony formation in culture by recombinant rat stem cell factor, ligand for c-kit. Blood. 1991 Sep 1;78(5):1223–1229. [PubMed] [Google Scholar]
  31. Tsunoda J., Okada S., Suda J., Nagayoshi K., Nakauchi H., Hatake K., Miura Y., Suda T. In vivo stem cell function of interleukin-3-induced blast cells. Blood. 1991 Jul 15;78(2):318–322. [PubMed] [Google Scholar]
  32. Williams D. E., Eisenman J., Baird A., Rauch C., Van Ness K., March C. J., Park L. S., Martin U., Mochizuki D. Y., Boswell H. S. Identification of a ligand for the c-kit proto-oncogene. Cell. 1990 Oct 5;63(1):167–174. doi: 10.1016/0092-8674(90)90297-r. [DOI] [PubMed] [Google Scholar]
  33. Williams N., Bertoncello I., Kavnoudias H., Zsebo K., McNiece I. Recombinant rat stem cell factor stimulates the amplification and differentiation of fractionated mouse stem cell populations. Blood. 1992 Jan 1;79(1):58–64. [PubMed] [Google Scholar]
  34. Witte O. N. Steel locus defines new multipotent growth factor. Cell. 1990 Oct 5;63(1):5–6. doi: 10.1016/0092-8674(90)90280-r. [DOI] [PubMed] [Google Scholar]
  35. Wood P. M., Jordan R. K., Givan A. L., Brooks C. G. IL-3 and IL-4 affect thymocyte differentiation in organ culture. Immunology. 1990 Sep;71(1):83–89. [PMC free article] [PubMed] [Google Scholar]
  36. Zsebo K. M., Williams D. A., Geissler E. N., Broudy V. C., Martin F. H., Atkins H. L., Hsu R. Y., Birkett N. C., Okino K. H., Murdock D. C. Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell. 1990 Oct 5;63(1):213–224. doi: 10.1016/0092-8674(90)90302-u. [DOI] [PubMed] [Google Scholar]
  37. Zsebo K. M., Wypych J., McNiece I. K., Lu H. S., Smith K. A., Karkare S. B., Sachdev R. K., Yuschenkoff V. N., Birkett N. C., Williams L. R. Identification, purification, and biological characterization of hematopoietic stem cell factor from buffalo rat liver--conditioned medium. Cell. 1990 Oct 5;63(1):195–201. doi: 10.1016/0092-8674(90)90300-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES