Abstract
To determine the number of maximal mouth pressure manoeuvres needed to obtain a reproducible value of maximal inspiratory mouth pressure (MIP), we studied 44 patients with chronic airflow obstruction, with a mean (SD) % predicted FEV1 value of 53.9 (25), who were clinically stable. Maximal inspiratory mouth pressure was determined with an anaeroid manometer during maximal inspiratory efforts in a quasi static condition at residual volume. All patients performed 20 consecutive maximal inspiratory mouth manoeuvres, each one separated by 30-40 seconds. The mean (SD) values of MIP varied from 71.5 (25.5) cm H2O at the first measurement to 80.1 (27) cm H2O at the last measurement. Maximal values of MIP were usually achieved after nine determinations. It is concluded that to obtain a reproducible MIP value in patients with chronic airflow obstruction who are untrained and unexperienced in such manoeuvres a minimum of nine technically acceptable maximal mouth pressure manoeuvres should be performed.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Belman M. J., Sieck G. C. The ventilatory muscles. Fatigue, endurance and training. Chest. 1982 Dec;82(6):761–766. doi: 10.1378/chest.82.6.761. [DOI] [PubMed] [Google Scholar]
- Black L. F., Hyatt R. E. Maximal respiratory pressures: normal values and relationship to age and sex. Am Rev Respir Dis. 1969 May;99(5):696–702. doi: 10.1164/arrd.1969.99.5.696. [DOI] [PubMed] [Google Scholar]
- Edwards R. H. The diaphragm as a muscle. Mechanisms underlying fatigue. Am Rev Respir Dis. 1979 Feb;119(2 Pt 2):81–84. doi: 10.1164/arrd.1979.119.2P2.81. [DOI] [PubMed] [Google Scholar]
- Gaultier C., Zinman R. Maximal static pressures in healthy children. Respir Physiol. 1983 Jan;51(1):45–61. doi: 10.1016/0034-5687(83)90101-9. [DOI] [PubMed] [Google Scholar]
- Godfrey K. Statistics in practice. Comparing the means of several groups. N Engl J Med. 1985 Dec 5;313(23):1450–1456. doi: 10.1056/NEJM198512053132305. [DOI] [PubMed] [Google Scholar]
- Leech J. A., Ghezzo H., Stevens D., Becklake M. R. Respiratory pressures and function in young adults. Am Rev Respir Dis. 1983 Jul;128(1):17–23. doi: 10.1164/arrd.1983.128.1.17. [DOI] [PubMed] [Google Scholar]
- Roca J., Sanchis J., Agusti-Vidal A., Segarra F., Navajas D., Rodriguez-Roisin R., Casan P., Sans S. Spirometric reference values from a Mediterranean population. Bull Eur Physiopathol Respir. 1986 May-Jun;22(3):217–224. [PubMed] [Google Scholar]
- Rochester D. F., Arora N. S., Braun N. M., Goldberg S. K. The respiratory muscles in chronic obstructive pulmonary disease (COPD). Bull Eur Physiopathol Respir. 1979 Sep-Oct;15(5):951–975. [PubMed] [Google Scholar]
- Rochester D. F., Braun N. M. Determinants of maximal inspiratory pressure in chronic obstructive pulmonary disease. Am Rev Respir Dis. 1985 Jul;132(1):42–47. doi: 10.1164/arrd.1985.132.1.42. [DOI] [PubMed] [Google Scholar]
- Rochester D. F., Braun N. M., Laine S. Diaphragmatic energy expenditure in chronic respiratory failure. The effect of assisted ventilation with body respirators. Am J Med. 1977 Aug;63(2):223–232. doi: 10.1016/0002-9343(77)90236-4. [DOI] [PubMed] [Google Scholar]
- Scharff O., Vestergaard-Bogind B. Activation by freezing of the adenosine triphosphate-hydrolyzing enzyme system in human red cell membranes. Scand J Clin Lab Invest. 1966;18(1):87–95. doi: 10.3109/00365516609065611. [DOI] [PubMed] [Google Scholar]
- Smyth R. J., Chapman K. R., Rebuck A. S. Maximal inspiratory and expiratory pressures in adolescents. Normal values. Chest. 1984 Oct;86(4):568–572. doi: 10.1378/chest.86.4.568. [DOI] [PubMed] [Google Scholar]
