Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Apr 1;90(7):2817–2821. doi: 10.1073/pnas.90.7.2817

Mutation of p53 in primary biopsy material and cell lines from Hodgkin disease.

R K Gupta 1, K Patel 1, W F Bodmer 1, J G Bodmer 1
PMCID: PMC46187  PMID: 8464894

Abstract

The p53 tumor-suppressor gene encodes a nuclear phosphoprotein that arrests cell cycle progress at G1. It may facilitate DNA damage repair and is frequently mutated in many human tumors. Hodgkin disease, a malignant condition of the lymphoid system, is characterized by the presence of Reed-Sternberg cells and mononuclear variants (Hodgkin cells), whose etiology remains unknown. The large multinucleated Reed-Sternberg cells often comprise < 1% of the total cell population within a biopsy specimen and are thought to be the neoplastic component in an admixture of reactive cells. It has been shown in the large majority of cases that up to 60% of these multinucleated cells react with CM-1, an anti-p53 antibody. However, whether this "overexpression" of p53 protein reflects abnormality at the DNA level can no longer be assumed by immunocytochemistry alone. p53 from six Hodgkin disease-derived cell lines was examined by immunoprecipitation, polymerase chain reaction (PCR)-single-strand conformation polymorphism analysis, and sequencing. In one cell line, point mutations were identified in exons 5 and 8 of p53. Sequencing of cloned PCR products confirmed the mutations to be on different alleles. A strategy involving extraction of nuclei followed by enrichment by flow cytometry was used to determine whether p53 overexpression in the Reed-Sternberg cells from patient biopsy material was due to mutations in this gene. Single-strand conformation polymorphism revealed additional bands in the polyploid nuclear preparations, suggesting abnormalities, and sequence analysis confirmed the presence of point mutations.

Full text

PDF
2817

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnstein P., Taylor D. O., Nelson-Rees W. A., Huebner R. J., Lennette E. H. Propagation of human tumors in antithymocyte serum-treated mice. J Natl Cancer Inst. 1974 Jan;52(1):71–84. doi: 10.1093/jnci/52.1.71. [DOI] [PubMed] [Google Scholar]
  2. Barnes D. M., Hanby A. M., Gillett C. E., Mohammed S., Hodgson S., Bobrow L. G., Leigh I. M., Purkis T., MacGeoch C., Spurr N. K. Abnormal expression of wild type p53 protein in normal cells of a cancer family patient. Lancet. 1992 Aug 1;340(8814):259–263. doi: 10.1016/0140-6736(92)92354-i. [DOI] [PubMed] [Google Scholar]
  3. Barton C. M., Staddon S. L., Hughes C. M., Hall P. A., O'Sullivan C., Klöppel G., Theis B., Russell R. C., Neoptolemos J., Williamson R. C. Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer. Br J Cancer. 1991 Dec;64(6):1076–1082. doi: 10.1038/bjc.1991.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bártek J., Bártková J., Vojtesek B., Stasková Z., Lukás J., Rejthar A., Kovarík J., Midgley C. A., Gannon J. V., Lane D. P. Aberrant expression of the p53 oncoprotein is a common feature of a wide spectrum of human malignancies. Oncogene. 1991 Sep;6(9):1699–1703. [PubMed] [Google Scholar]
  5. Caron de Fromentel C., Soussi T. TP53 tumor suppressor gene: a model for investigating human mutagenesis. Genes Chromosomes Cancer. 1992 Jan;4(1):1–15. doi: 10.1002/gcc.2870040102. [DOI] [PubMed] [Google Scholar]
  6. Diehl V., Kirchner H. H., Schaadt M., Fonatsch C., Stein H., Gerdes J., Boie C. Hodgkin's disease: establishment and characterization of four in vitro cell lies. J Cancer Res Clin Oncol. 1981;101(1):111–124. doi: 10.1007/BF00405072. [DOI] [PubMed] [Google Scholar]
  7. Drexler H. G., Gaedicke G., Lok M. S., Diehl V., Minowada J. Hodgkin's disease derived cell lines HDLM-2 and L-428: comparison of morphology, immunological and isoenzyme profiles. Leuk Res. 1986;10(5):487–500. doi: 10.1016/0145-2126(86)90084-6. [DOI] [PubMed] [Google Scholar]
  8. Drexler H. G. Recent results on the biology of Hodgkin and Reed-Sternberg cells. I. Biopsy material. Leuk Lymphoma. 1992 Nov;8(4-5):283–313. doi: 10.3109/10428199209051008. [DOI] [PubMed] [Google Scholar]
  9. Finlay C. A. p53 loss of function: implications for the processes of immortalization and tumorigenesis. Bioessays. 1992 Aug;14(8):557–560. doi: 10.1002/bies.950140811. [DOI] [PubMed] [Google Scholar]
  10. Gannon J. V., Greaves R., Iggo R., Lane D. P. Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. EMBO J. 1990 May;9(5):1595–1602. doi: 10.1002/j.1460-2075.1990.tb08279.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gupta R. K., Norton A. J., Thompson I. W., Lister T. A., Bodmer J. G. p53 expression in Reed-Sternberg cells of Hodgkin's disease. Br J Cancer. 1992 Oct;66(4):649–652. doi: 10.1038/bjc.1992.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hall P. A., McKee P. H., Menage H. D., Dover R., Lane D. P. High levels of p53 protein in UV-irradiated normal human skin. Oncogene. 1993 Jan;8(1):203–207. [PubMed] [Google Scholar]
  13. Hall P. A., Ray A., Lemoine N. R., Midgley C. A., Krausz T., Lane D. P. p53 immunostaining as a marker of malignant disease in diagnostic cytopathology. Lancet. 1991 Aug 24;338(8765):513–513. doi: 10.1016/0140-6736(91)90586-e. [DOI] [PubMed] [Google Scholar]
  14. Harlow E., Crawford L. V., Pim D. C., Williamson N. M. Monoclonal antibodies specific for simian virus 40 tumor antigens. J Virol. 1981 Sep;39(3):861–869. doi: 10.1128/jvi.39.3.861-869.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Iggo R., Gatter K., Bartek J., Lane D., Harris A. L. Increased expression of mutant forms of p53 oncogene in primary lung cancer. Lancet. 1990 Mar 24;335(8691):675–679. doi: 10.1016/0140-6736(90)90801-b. [DOI] [PubMed] [Google Scholar]
  16. Jones D. B., Scott C. S., Wright D. H., Stein H., Beverley P. C., Payne S. V., Crawford D. H. Phenotypic analysis of an established cell line derived from a patient with Hodgkin's disease (HD). Hematol Oncol. 1985 Apr-Jun;3(2):133–145. doi: 10.1002/hon.2900030205. [DOI] [PubMed] [Google Scholar]
  17. Jücker M., Schaadt M., Diehl V., Poppema S., Jones D., Tesch H. Heterogeneous expression of proto-oncogenes in Hodgkin's disease derived cell lines. Hematol Oncol. 1990 Jul-Aug;8(4):191–204. doi: 10.1002/hon.2900080404. [DOI] [PubMed] [Google Scholar]
  18. Kamesaki H., Fukuhara S., Tatsumi E., Uchino H., Yamabe H., Miwa H., Shirakawa S., Hatanaka M., Honjo T. Cytochemical, immunologic, chromosomal, and molecular genetic analysis of a novel cell line derived from Hodgkin's disease. Blood. 1986 Jul;68(1):285–292. [PubMed] [Google Scholar]
  19. Kastan M. B., Onyekwere O., Sidransky D., Vogelstein B., Craig R. W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991 Dec 1;51(23 Pt 1):6304–6311. [PubMed] [Google Scholar]
  20. Lane D. P. Cancer. p53, guardian of the genome. Nature. 1992 Jul 2;358(6381):15–16. doi: 10.1038/358015a0. [DOI] [PubMed] [Google Scholar]
  21. Levine A. J., Momand J., Finlay C. A. The p53 tumour suppressor gene. Nature. 1991 Jun 6;351(6326):453–456. doi: 10.1038/351453a0. [DOI] [PubMed] [Google Scholar]
  22. Levine A. J. The p53 tumor-suppressor gene. N Engl J Med. 1992 May 14;326(20):1350–1352. doi: 10.1056/NEJM199205143262008. [DOI] [PubMed] [Google Scholar]
  23. Lu X., Park S. H., Thompson T. C., Lane D. P. Ras-induced hyperplasia occurs with mutation of p53, but activated ras and myc together can induce carcinoma without p53 mutation. Cell. 1992 Jul 10;70(1):153–161. doi: 10.1016/0092-8674(92)90541-j. [DOI] [PubMed] [Google Scholar]
  24. Malkin D., Li F. P., Strong L. C., Fraumeni J. F., Jr, Nelson C. E., Kim D. H., Kassel J., Gryka M. A., Bischoff F. Z., Tainsky M. A. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990 Nov 30;250(4985):1233–1238. doi: 10.1126/science.1978757. [DOI] [PubMed] [Google Scholar]
  25. Matlashewski G. J., Tuck S., Pim D., Lamb P., Schneider J., Crawford L. V. Primary structure polymorphism at amino acid residue 72 of human p53. Mol Cell Biol. 1987 Feb;7(2):961–963. doi: 10.1128/mcb.7.2.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Michalovitz D., Halevy O., Oren M. p53 mutations: gains or losses? J Cell Biochem. 1991 Jan;45(1):22–29. doi: 10.1002/jcb.240450108. [DOI] [PubMed] [Google Scholar]
  27. Midgley C. A., Fisher C. J., Bártek J., Vojtesek B., Lane D., Barnes D. M. Analysis of p53 expression in human tumours: an antibody raised against human p53 expressed in Escherichia coli. J Cell Sci. 1992 Jan;101(Pt 1):183–189. doi: 10.1242/jcs.101.1.183. [DOI] [PubMed] [Google Scholar]
  28. Oda T., Tsuda H., Scarpa A., Sakamoto M., Hirohashi S. Mutation pattern of the p53 gene as a diagnostic marker for multiple hepatocellular carcinoma. Cancer Res. 1992 Jul 1;52(13):3674–3678. [PubMed] [Google Scholar]
  29. Oren M. p53: the ultimate tumor suppressor gene? FASEB J. 1992 Oct;6(13):3169–3176. doi: 10.1096/fasebj.6.13.1397838. [DOI] [PubMed] [Google Scholar]
  30. Pezzella F., Turley H., Kuzu I., Gatter K. C., Mason D. Y., Harris A. Reversible p53 expression in lung cancer. Lancet. 1992 Oct 10;340(8824):922–922. doi: 10.1016/0140-6736(92)93342-k. [DOI] [PubMed] [Google Scholar]
  31. Porter P. L., Gown A. M., Kramp S. G., Coltrera M. D. Widespread p53 overexpression in human malignant tumors. An immunohistochemical study using methacarn-fixed, embedded tissue. Am J Pathol. 1992 Jan;140(1):145–153. [PMC free article] [PubMed] [Google Scholar]
  32. Schaadt M., Fonatsch C., Kirchner H., Diehl V. Establishment of a malignant, Epstein-Barr-virus (EBV)-negative cell-line from the pleura effusion of a patient with Hodgkin's disease. Blut. 1979 Feb 19;38(2):185–190. doi: 10.1007/BF01007965. [DOI] [PubMed] [Google Scholar]
  33. Schouten H. C., Sanger W. G., Duggan M., Weisenburger D. D., MacLennan K. A., Armitage J. O. Chromosomal abnormalities in Hodgkin's disease. Blood. 1989 Jun;73(8):2149–2154. [PubMed] [Google Scholar]
  34. Stein H., Herbst H., Anagnostopoulos I., Niedobitek G., Dallenbach F., Kratzsch H. C. The nature of Hodgkin and Reed-Sternberg cells, their association with EBV, and their relationship to anaplastic large-cell lymphoma. Ann Oncol. 1991 Feb;2 (Suppl 2):33–38. doi: 10.1007/978-1-4899-7305-4_5. [DOI] [PubMed] [Google Scholar]
  35. Thangavelu M., Le Beau M. M. Chromosomal abnormalities in Hodgkin's disease. Hematol Oncol Clin North Am. 1989 Jun;3(2):221–236. [PubMed] [Google Scholar]
  36. Thompson A. M., Anderson T. J., Condie A., Prosser J., Chetty U., Carter D. C., Evans H. J., Steel C. M. p53 allele losses, mutations and expression in breast cancer and their relationship to clinico-pathological parameters. Int J Cancer. 1992 Feb 20;50(4):528–532. doi: 10.1002/ijc.2910500405. [DOI] [PubMed] [Google Scholar]
  37. Villuendas R., Piris M. A., Orradre J. L., Mollejo M., Algara P., Sanchez L., Martinez J. C., Martinez P. P53 protein expression in lymphomas and reactive lymphoid tissue. J Pathol. 1992 Mar;166(3):235–241. doi: 10.1002/path.1711660305. [DOI] [PubMed] [Google Scholar]
  38. Vogelstein B., Kinzler K. W. p53 function and dysfunction. Cell. 1992 Aug 21;70(4):523–526. doi: 10.1016/0092-8674(92)90421-8. [DOI] [PubMed] [Google Scholar]
  39. Waye J. S., Willard H. F. Molecular analysis of a deletion polymorphism in alpha satellite of human chromosome 17: evidence for homologous unequal crossing-over and subsequent fixation. Nucleic Acids Res. 1986 Sep 11;14(17):6915–6927. doi: 10.1093/nar/14.17.6915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Williams S. V., Jones T. A., Cottrell S., Zehetner G., Varesco L., Ward T., Thomas H., Lawson P. A., Solomon E., Bodmer W. F. Fine mapping of probes in the adenomatous polyposis coli region of chromosome 5 by in situ hybridization. Genes Chromosomes Cancer. 1991 Sep;3(5):382–389. doi: 10.1002/gcc.2870030509. [DOI] [PubMed] [Google Scholar]
  41. Wright P. A., Lemoine N. R., Goretzki P. E., Wyllie F. S., Bond J., Hughes C., Röher H. D., Williams E. D., Wynford-Thomas D. Mutation of the p53 gene in a differentiated human thyroid carcinoma cell line, but not in primary thyroid tumours. Oncogene. 1991 Sep;6(9):1693–1697. [PubMed] [Google Scholar]
  42. Wynford-Thomas D. P53 in tumour pathology: can we trust immunocytochemistry? J Pathol. 1992 Apr;166(4):329–330. doi: 10.1002/path.1711660402. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES