Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Apr 1;90(7):2915–2919. doi: 10.1073/pnas.90.7.2915

Opioid peptides activate phospholipase D and protein kinase C-epsilon in chicken embryo neuron cultures.

D Mangoura 1, G Dawson 1
PMCID: PMC46207  PMID: 8464907

Abstract

The mu-opioid peptide morphiceptin stimulated a Ca(2+)-independent protein kinase C (PKC-epsilon) that is expressed both in embryonic day 6 chicken telencephalon and in derived neuronal cultures. This activation was seen as a 2-fold increase in the activity and level of cytosolic PKC-epsilon and as a transient increase in membrane-associated PKC-epsilon following morphiceptin treatment. Morphiceptin did not activate phospholipase C-mediated phosphatidylinositol hydrolysis but did transiently activate (2- to 3-fold) phospholipase D (PLD), as measured by phosphatidylethanol formation in neuron cultures derived from embryonic day 6 or day 7 cerebral hemispheres. This PLD activation could provide an alternative source of diacylglycerol for the activation of PKC-epsilon and was naloxone-reversible and at least partially blocked by the tyrosine kinase inhibitor herbimycin A. Addition of phorbol 12-myristate 13-acetate stimulated both PLD and PKC-epsilon activities to a greater extent than opioids. The phorbol ester and insulin stimulation of PLD was also blocked by herbimycin. Both morphiceptin (in a naloxone-reversible manner) and phorbol ester increased phosphorylation of similar cytosolic proteins in intact cells, demonstrating a functional role for the PKC-epsilon activation by opioids. This is evidence that opioid receptors are transiently coupled to tyrosine kinase, PLD and PKC-epsilon activation and, by implication, to neuronal cell growth during brain morphogenesis.

Full text

PDF
2915

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baxter G., Oto E., Daniel-Issakani S., Strulovici B. Constitutive presence of a catalytic fragment of protein kinase C epsilon in a small cell lung carcinoma cell line. J Biol Chem. 1992 Jan 25;267(3):1910–1917. [PubMed] [Google Scholar]
  2. Billah M. M., Eckel S., Mullmann T. J., Egan R. W., Siegel M. I. Phosphatidylcholine hydrolysis by phospholipase D determines phosphatidate and diglyceride levels in chemotactic peptide-stimulated human neutrophils. Involvement of phosphatidate phosphohydrolase in signal transduction. J Biol Chem. 1989 Oct 15;264(29):17069–17077. [PubMed] [Google Scholar]
  3. Bloom F. E. Neurotransmitters: past, present, and future directions. FASEB J. 1988 Jan;2(1):32–41. doi: 10.1096/fasebj.2.1.2891578. [DOI] [PubMed] [Google Scholar]
  4. Carter R. H., Park D. J., Rhee S. G., Fearon D. T. Tyrosine phosphorylation of phospholipase C induced by membrane immunoglobulin in B lymphocytes. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2745–2749. doi: 10.1073/pnas.88.7.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen L., Huang L. Y. Sustained potentiation of NMDA receptor-mediated glutamate responses through activation of protein kinase C by a mu opioid. Neuron. 1991 Aug;7(2):319–326. doi: 10.1016/0896-6273(91)90270-a. [DOI] [PubMed] [Google Scholar]
  6. Christie M. J., North R. A. Agonists at mu-opioid, M2-muscarinic and GABAB-receptors increase the same potassium conductance in rat lateral parabrachial neurones. Br J Pharmacol. 1988 Nov;95(3):896–902. doi: 10.1111/j.1476-5381.1988.tb11719.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cook S. J., Wakelam M. J. Epidermal growth factor increases sn-1,2-diacylglycerol levels and activates phospholipase D-catalysed phosphatidylcholine breakdown in Swiss 3T3 cells in the absence of inositol-lipid hydrolysis. Biochem J. 1992 Jul 1;285(Pt 1):247–253. doi: 10.1042/bj2850247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. De Camilli P., Harris S. M., Jr, Huttner W. B., Greengard P. Synapsin I (Protein I), a nerve terminal-specific phosphoprotein. II. Its specific association with synaptic vesicles demonstrated by immunocytochemistry in agarose-embedded synaptosomes. J Cell Biol. 1983 May;96(5):1355–1373. doi: 10.1083/jcb.96.5.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Exton J. H. Signaling through phosphatidylcholine breakdown. J Biol Chem. 1990 Jan 5;265(1):1–4. [PubMed] [Google Scholar]
  10. Geny B., Cockcroft S. Synergistic activation of phospholipase D by protein kinase C- and G-protein-mediated pathways in streptolysin O-permeabilized HL60 cells. Biochem J. 1992 Jun 1;284(Pt 2):531–538. doi: 10.1042/bj2840531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Heidenreich K. A., Toledo S. P., Brunton L. L., Watson M. J., Daniel-Issakani S., Strulovici B. Insulin stimulates the activity of a novel protein kinase C, PKC-epsilon, in cultured fetal chick neurons. J Biol Chem. 1990 Sep 5;265(25):15076–15082. [PubMed] [Google Scholar]
  12. Hisanaga K., Sagar S. M., Hicks K. J., Swanson R. A., Sharp F. R. c-fos proto-oncogene expression in astrocytes associated with differentiation or proliferation but not depolarization. Brain Res Mol Brain Res. 1990 Jun;8(1):69–75. doi: 10.1016/0169-328x(90)90011-2. [DOI] [PubMed] [Google Scholar]
  13. Horwitz J. Bradykinin activates a phospholipase D that hydrolyzes phosphatidylcholine in PC12 cells. J Neurochem. 1991 Feb;56(2):509–517. doi: 10.1111/j.1471-4159.1991.tb08179.x. [DOI] [PubMed] [Google Scholar]
  14. Ishizuka T., Yamamoto M., Kajita K., Nagashima T., Yasuda K., Miura K., Cooper D. R., Farese R. V. Insulin stimulates novel protein kinase C in rat adipocytes. Biochem Biophys Res Commun. 1992 Mar 16;183(2):814–820. doi: 10.1016/0006-291x(92)90556-z. [DOI] [PubMed] [Google Scholar]
  15. Kiss Z. Differential effects of platelet-derived growth factor, serum and bombesin on phospholipase D-mediated hydrolysis of phosphatidylethanolamine in NIH 3T3 fibroblasts. Biochem J. 1992 Jul 1;285(Pt 1):229–233. doi: 10.1042/bj2850229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Koide H., Ogita K., Kikkawa U., Nishizuka Y. Isolation and characterization of the epsilon subspecies of protein kinase C from rat brain. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1149–1153. doi: 10.1073/pnas.89.4.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Lutfy K., Chang S. C., Candido J., Jang Y., Sierra V., Yoburn B. C. Modification of morphine-induced analgesia and toxicity by pertussis toxin. Brain Res. 1991 Mar 29;544(2):191–195. doi: 10.1016/0006-8993(91)90053-x. [DOI] [PubMed] [Google Scholar]
  20. Mangoura D., Dawson G. Chronic opioid treatment attenuates carbachol-mediated polyphosphoinositide hydrolysis in chick embryo neuronal cultures. Brain Res. 1991 May 10;548(1-2):273–278. doi: 10.1016/0006-8993(91)91132-k. [DOI] [PubMed] [Google Scholar]
  21. Mangoura D., Sakellaridis N., Vernadakis A. Cholinergic neurons in cultures derived from three-, six- or eight-day-old chick embryo: a biochemical and immunocytochemical study. Brain Res. 1988 May 1;468(1):37–46. doi: 10.1016/0165-3806(88)90005-3. [DOI] [PubMed] [Google Scholar]
  22. Mangoura D., Vernadakis A. GABAergic neurons in cultures derived from three-, six- or eight-day-old chick embryo: a biochemical and immunocytochemical study. Brain Res. 1988 May 1;468(1):25–35. doi: 10.1016/0165-3806(88)90004-1. [DOI] [PubMed] [Google Scholar]
  23. McAtee P., Dawson G. Rapid dephosphorylation of protein kinase C substrates by protein kinase A activators results from inhibition of diacylglycerol release. J Biol Chem. 1989 Jul 5;264(19):11193–11199. [PubMed] [Google Scholar]
  24. McGrath J. P., Capon D. J., Goeddel D. V., Levinson A. D. Comparative biochemical properties of normal and activated human ras p21 protein. Nature. 1984 Aug 23;310(5979):644–649. doi: 10.1038/310644a0. [DOI] [PubMed] [Google Scholar]
  25. McKenzie F. R., Milligan G. Delta-opioid-receptor-mediated inhibition of adenylate cyclase is transduced specifically by the guanine-nucleotide-binding protein Gi2. Biochem J. 1990 Apr 15;267(2):391–398. doi: 10.1042/bj2670391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Miller R. J. Calcium signalling in neurons. Trends Neurosci. 1988 Oct;11(10):415–419. doi: 10.1016/0166-2236(88)90191-9. [DOI] [PubMed] [Google Scholar]
  27. Moss D. J., Fernyhough P., Chapman K., Baizer L., Bray D., Allsopp T. Chicken growth-associated protein GAP-43 is tightly bound to the actin-rich neuronal membrane skeleton. J Neurochem. 1990 Mar;54(3):729–736. doi: 10.1111/j.1471-4159.1990.tb02312.x. [DOI] [PubMed] [Google Scholar]
  28. Ohno S., Akita Y., Konno Y., Imajoh S., Suzuki K. A novel phorbol ester receptor/protein kinase, nPKC, distantly related to the protein kinase C family. Cell. 1988 Jun 3;53(5):731–741. doi: 10.1016/0092-8674(88)90091-8. [DOI] [PubMed] [Google Scholar]
  29. Pears C., Schaap D., Parker P. J. The regulatory domain of protein kinase C-epsilon restricts the catalytic-domain-specificity. Biochem J. 1991 May 15;276(Pt 1):257–260. doi: 10.1042/bj2760257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pfeffer L. M., Eisenkraft B. L., Reich N. C., Improta T., Baxter G., Daniel-Issakani S., Strulovici B. Transmembrane signaling by interferon alpha involves diacylglycerol production and activation of the epsilon isoform of protein kinase C in Daudi cells. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):7988–7992. doi: 10.1073/pnas.88.18.7988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Randall R. W., Bonser R. W., Thompson N. T., Garland L. G. A novel and sensitive assay for phospholipase D in intact cells. FEBS Lett. 1990 May 7;264(1):87–90. doi: 10.1016/0014-5793(90)80772-b. [DOI] [PubMed] [Google Scholar]
  32. Sagara J., Yamada K. M., Kakunaga T. Induction of an unusual type of shared phosphorylation in human and avian cells by tumor-promoting phorbol esters or transformation. Cancer Res. 1986 Oct;46(10):5291–5296. [PubMed] [Google Scholar]
  33. Sakellaridis N., Vernadakis A. An unconventional response of adenylate cyclase to morphine and naloxone in the chicken during early development. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2738–2742. doi: 10.1073/pnas.83.8.2738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schaap D., Hsuan J., Totty N., Parker P. J. Proteolytic activation of protein kinase C-epsilon. Eur J Biochem. 1990 Jul 31;191(2):431–435. doi: 10.1111/j.1432-1033.1990.tb19139.x. [DOI] [PubMed] [Google Scholar]
  35. Schaap D., Parker P. J. Expression, purification, and characterization of protein kinase C-epsilon. J Biol Chem. 1990 May 5;265(13):7301–7307. [PubMed] [Google Scholar]
  36. Shen K. F., Crain S. M. Cholera toxin-A subunit blocks opioid excitatory effects on sensory neuron action potentials indicating mediation by Gs-linked opioid receptors. Brain Res. 1990 Aug 20;525(2):225–231. doi: 10.1016/0006-8993(90)90868-c. [DOI] [PubMed] [Google Scholar]
  37. Thompson N. T., Bonser R. W., Garland L. G. Receptor-coupled phospholipase D and its inhibition. Trends Pharmacol Sci. 1991 Nov;12(11):404–408. doi: 10.1016/0165-6147(91)90617-2. [DOI] [PubMed] [Google Scholar]
  38. Trilivas I., McDonough P. M., Brown J. H. Dissociation of protein kinase C redistribution from the phosphorylation of its substrates. J Biol Chem. 1991 May 5;266(13):8431–8438. [PubMed] [Google Scholar]
  39. Ueda H., Misawa H., Katada T., Ui M., Takagi H., Satoh M. Functional reconstruction of purified Gi and Go with mu-opioid receptors in guinea pig striatal membranes pretreated with micromolar concentrations of N-ethylmaleimide. J Neurochem. 1990 Mar;54(3):841–848. doi: 10.1111/j.1471-4159.1990.tb02328.x. [DOI] [PubMed] [Google Scholar]
  40. Uings I. J., Thompson N. T., Randall R. W., Spacey G. D., Bonser R. W., Hudson A. T., Garland L. G. Tyrosine phosphorylation is involved in receptor coupling to phospholipase D but not phospholipase C in the human neutrophil. Biochem J. 1992 Feb 1;281(Pt 3):597–600. doi: 10.1042/bj2810597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Vernadakis A., Sakellaridis N., Geladopoulos T., Mangoura D. Function of opioids early in embryogenesis. Ann N Y Acad Sci. 1990;579:109–122. doi: 10.1111/j.1749-6632.1990.tb48354.x. [DOI] [PubMed] [Google Scholar]
  42. Wang P., Anthes J. C., Siegel M. I., Egan R. W., Billah M. M. Existence of cytosolic phospholipase D. Identification and comparison with membrane-bound enzyme. J Biol Chem. 1991 Aug 15;266(23):14877–14880. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES