Skip to main content
Revista Paulista de Pediatria logoLink to Revista Paulista de Pediatria
. 2015 Jul-Sep;33(3):340–348. doi: 10.1016/j.rpped.2014.09.007
View full-text in Portuguese

Low birth weight and obesity: causal or casual casual association?

Adolfo Monteiro Ribeiro a,*, Marília de Carvalho Lima a, Pedro Israel Cabral de Lira a, Giselia Alves Pontes da Silva a
PMCID: PMC4620962  PMID: 26122207

Abstract

Objective:

To present the conceptual foundations that explain how events occurring during intrauterine life may influence body development, emphasizing the interrelation between low birth weight and risk of obesity throughout life.

Data sources:

Google Scholar, Library Scientific Electronic Online (SciELO), EBSCO, Scopus, and PubMed were the databases. “Catch-up growth”, “life course health”, “disease”, “child”, “development”, “early life”, “perinatal programming”, “epigenetics”, “breastfeeding”, “small baby syndrome”, “phenotype”, “micronutrients”, “maternal nutrition”, “obesity”, and “adolescence” were isolated or associated keywords for locating reviews and epidemiological, intervention and experimental studies published between 1934 and 2014, with complete texts in Portuguese and English. Duplicate articles, editorials and reviews were excluded, as well as approaches of diseases different from obesity.

Data synthesis:

Within 47 selected articles among 538 eligible ones, the thrifty phenotype hypothesis, the epigenetic mechanisms and the development plasticity were identified as fundamental factors to explain the mechanisms involved in health and disease throughout life. They admit the possibility that both cardiometabolic events and obesity originate from intrauterine nutritional deficiency, which, associated with a food supply that is excessive to the metabolic needs of the organism in early life stages, causes endocrine changes. However, there may be phenotypic reprogramming for low birth weight newborns from adequate nutritional supply, thus overcoming a restrictive intrauterine environment. Therefore, catch-up growth may indicate recovery from intrauterine constraint, which is associated with short-term benefits or harms in adulthood.

Conclusions:

Depending on the nutritional adequacy in the first years of life, developmental plasticity may lead to phenotype reprogramming and reduce the risk of obesity.

Keywords: Human development, Low birth weight, Nutrition, Obesity, Health, Disease

Introduction

The knowledge of the processes involved in human development contributes to the better understanding of the mechanisms associated with health and disease throughout life.1 To identify these mechanisms, when and how they work is probably the best way to prevent the disease onset. Only in recent years several diseases that affect adults have been associated with intrauterine period events.2 - 4

Although complementary examinations provide information that allows fetal development monitoring, obtaining data at birth provides better conditions for assessment, with adequacy of weight for gestational age being the first measurement capable of providing information on fetal interaction with the intrauterine environment.5

The fetus reflects, through nutrition, growth and body composition, the supplies and the energy it receives from the mother, also expressing its dependence on placental function.6 The fetus also receives a flow of chemical mediators, which inform about the maternal nutritional status and possibly the quality of the postnatal environment.3 This information contributes to define body composition and size, as well as to structure the endocrine and metabolic systems.7

The United Nations Children's Fund8 reports that the worldwide incidence of low birth weight remained at 15% in the period of 2008-2012, despite the advances in prenatal care. The World Health Organization9 confirms that more than 40 million children younger than 5 years are overweight or obese and, therefore, are susceptible to an increased risk of noncommunicable diseases. These statistics reinforce the importance of considering the interrelations between low birth weight and the risk of obesity and its comorbidities throughout life, considering that this understanding is the basis to establish early interventions that can change the natural history of this process.

This review aimed to disclose the conceptual and empirical foundations underlying the understanding of the effect of intrauterine life events on body development, emphasizing the interrelation between low birth weight and obesity throughout life.

Method

A narrative review was performed, using the descriptors “catch-up growth”, “life course health”, “disease”, “child”, “development”, “human evolution”, “adaptive”, “infant”, “early life”, “birth”, “weight”, “perinatal programming”, “epigenetics”, “breastfeeding”, “small baby syndrome”, “phenotype”, “micronutrients”, “maternal nutrition”, “fetus”, “obesity”, and “adolescence”, alone or in association with others, in the Google Scholar, Scientific Electronic Library Online (SciELO), EBSCO, Scopus and PubMed databases, to identify published articles.

Inclusion criteria comprised review articles, epidemiological, experimental or intervention studies published between 1934 and 2014, with full texts in Portuguese or English, addressing aspects of intrauterine development and its association with obesity. Abstracts or articles published in duplicate were excluded, as well as those addressing diagnosis or treatment of specific diseases rather than obesity, editorials and reviews.

Abstracts that met the inclusion criteria were reviewed by two independent reviewers who had knowledge of the central theme of the review, to attain consensual definition of the articles that would be read in full.

Results

A total of 538 abstracts were found, of which 330 were excluded, resulting in the analysis of the full texts of 208 articles. After applying the inclusion and exclusion criteria, the sample comprised 47 eligible articles that were included in the review (Fig. 1) and which were used to prepare the glossary described in Table 1.

Figure 1. Flowchart of article selection for the review.

Figure 1

Table 1. Glossary of terms and concepts used in this review.

Terms Concepts
Catch-up growth Period of rapid weight gain and/or acceleration in growth rate that occurs after a slowdown period
Epigenetics Study of alterations in gene expression that can be transmitted to offspring and do not imply in DNA sequence alterations
Thrifty phenotype hypothesis When the fetal environment is poor from a nutritional point of view, the fetal body goes through a programming process in which there is protection for the development of some organs (brain, heart); however, it leads to metabolic changes that may impact on later stages of life
Phenotypic plasticity The capacity of the organism to develop several phenotypes from a single genotype, in response to different environmental stimuli
Fetal programming Structural and functional changes that occur in the fetal body in response to stimuli that occur at critical periods of development
Predictive adaptive responses A process through which the body, in the early stages of development, predicts the environment it will be exposed to in the future by modifying itself phenotypically, based on the perception of environmental stimuli

First evidence and the thrifty phenotype hypothesis

The influence of factors present in early life was identified in reports that analyzed the mortality rate from all causes in the UK and Sweden, from 1845 to 1925, at the age range of 10-100 years, which originated the hypothesis that a change in the environment could help reduce mortality.10 , 11Failure to prove the hypothesis motivated the inclusion of the age group 5-10 years in the mortality study. This time, an association was observed between improvement in living conditions of children and adolescents and decrease in overall mortality rate in both countries, suggesting that the improvement of environmental conditions during pregnancy could have a direct effect on the health of children in the younger age groups.11

Studies carried out in equines12demonstrated the influence of the maternal body on the fetus, regardless of the genetic factor. Fetuses of large animals implanted in the uterus of small species resulted in foals that were smaller than expected, as well as fetuses generated in small equines showed greater development when implanted in large mares.

In the context of these ideas, Neel13published observations on the effects of maternal nutritional deprivation on the fetus. The author theorized that fetuses developed a type of metabolism aimed at conserving energy, with insulin resistance being important, which would be related to a random genetic mutation.13 The preponderance of this “thrifty genotype” would last and would be passed on to future generations, and thus, the abundant consumption of food would lead to obesity by excessive accumulation of reserves.

The effect of food shortages during the German siege of the Netherlands in World War II14 made women suffer the impact of malnutrition during pregnancy. The analysis of this natural experiment raised questions about Neel's hypothesis,13 as nutrient deprivation led to different effects than those expected. Fetuses that suffered malnutrition in the first trimester developed obesity in adulthood, while nutritional restriction after the initial phase of pregnancy was not associated with the same effect. Even if one would admit the importance of environmental stimuli in the occurrence of obesity, the genetic factor could not be ignored.

A Norwegian study15 reinforced the importance of nutritional status in childhood in the genesis of adult diseases. Considering the generation of individuals born between 1896 and 1925, it was verified that increased mortality in adults occurred in counties with higher infant mortality, with risk factors being increased blood cholesterol and a high-fat diet consumption, as well as individuals' social status, smoking and type of nutrition. Regarding the contribution of the high-fat diet to high cholesterol levels, the study identified different behaviors according to the socioeconomic status of individuals. The ones who had previously experienced poverty had increased cholesterol related to a high-fat diet, which did not occur with those with a financially stable life.15 These findings provided the basis for the hypothesis that the deprivation period contributed for individuals to develop “fat intolerance”, being exposed to a higher risk of death when they received an abundant diet.

In addition to the hypotheses of fat intolerance and the “thrifty genotype”, a cohort in Hertfordshire16 , 17 demonstrated an association between low birth weight and death from coronary heart disease in adulthood. Risk factors for cardiovascular and metabolic diseases were more frequent among those born with low birth weight.17 Additionally, Barker16 proposed that the fetus responds with growth retardation when there is a nutrient deficit in its environment, which is associated with decreased insulin sensitivity, providing better survival circumstances. This adaptation also predicts, in adult life, maintenance of an environment with low supply of nutrients. If this situation does not occur, the abundant supply of food creates an imbalance that can lead to cardiometabolic diseases. This context led to the thrifty phenotype hypothesis,16 and subsequently, to the predictive adaptive response,3 which are depicted in Fig. 2.

Figure 2. The thrifty phenotype hypothesis and predictive adaptive response.

Figure 2

Situations related to birth weight alterations reinforce its importance as an indicative marker of intrauterine environment and predictor of cardiometabolic diseases in adolescence and adulthood.18 - 20 Thus, birth weight may have a constitutional origin or be secondary to intrauterine nutritional deprivation, which leads to fetal growth restriction. It is acknowledged that low birth weight newborns undergo the influence of different mechanisms of adaptation to extra-uterine environment, among which are the increase in carbohydrate metabolism and the consequent increase in adiposity, increasing the future risk of chronic diseases such as insulin resistance, obesity and type 2 diabetes.19 These mechanisms lead to high levels of leptin, secondary to increased resistance level of its receptors, related to lack of satiety in early life, which is associated with obesity and metabolic disorders in adolescence and adulthood, when these newborns are exposed to a nutritional environment with excessive nutritional offer in the early years of life.20

When leaving this situation of restricted growth, due to hormonal or nutritional issues, to another with adequate supply of nutrients, accelerated growth recovery may occur to achieve the genetically determined potential,21 which is the so-called catch-up growth.22

Catch-up growth can be defined as the rate of weight gain and/or growth that is higher than the statistical limits of normality for age and maturity that occurs during a defined period of time, following a transient period of growth inhibition.21 Catch-up growth is a physiological process related to size recovery of a body subjected to restriction, so that it can reach the adequate size for age, gender and degree of maturity, depending on the action of the somatotropic axis, with an increase in hormone receptors.21

This recovery, resulting from unfavorable conditions for growth during the prenatal and early postnatal periods, can influence the risk of developing cardiometabolic diseases throughout life.23 , 24 However, short-term growth recovery offers advantages for neurodevelopment, particularly for children born with very low birth weight, and also contributes to increased resistance to infections. Hence the question of identifying whether the benefits of increased growth velocity can occur without adverse metabolic consequences.18

It is accepted that a catch-up growth >0.67 standard deviations would be associated with central obesity25 and trigger insulin resistance, which leads to a compensatory increase in insulin secretion, even in low birth weight newborns that showed increased growth rate, but remain small during childhood. Even if these children show an increase in growth rate, they have compensatory hyperinsulinemia to a greater degree than well-nourished children or the ones who are excessively fed. Thus, hyperinsulinemia secondary to insulin resistance could be the key explanation for the genesis of metabolic syndrome.26

Insulin resistance in preterm infants is associated with hypersecretion of growth hormone and reduced levels of IGF-1, which persist for 3 months after birth in the absence of adequate nutritional supply. This altered endocrine status favors reduction of subcutaneous adipose tissue, with relative visceral adiposity, a marker of insulin resistance, dyslipidemia, and the presence of other metabolic syndrome components.27

Despite these observations, it is not clear whether central obesity, rather than subcutaneous fat, is a function of prematurity, of being born small for gestational age or of catch-up growth. Studies have shown that infants with growth restriction at birth have reduced subcutaneous fat, but maintain levels of abdominal fat similar to those of newborns that are adequate for gestational age.28 A cohort study carried out to investigate the association between fetal and early postnatal growth and metabolic and anthropometric alterations showed that catch-up growth was associated with the fetal growth pattern, regardless of birth weight, and was related to higher insulin sensitivity and lower concentrations of leptin at birth. Therefore, the catch-up growth would promote the recovery of body size and fat stores without deleterious consequences to the metabolic profile and body composition, after one year of age.29

A recent review30 was performed to search evidence on the association between low weight, insulin resistance and type 2 diabetes in adults, considering body composition and metabolic pathways. The empirical basis shows a multifactorial association and points out that, in some children and adults who were born preterm, insulin resistance and increased abdominal adiposity originate from the variation of the glucocorticoid receptor gene. Higher concentrations of glucocorticoids activate the hypothalamic-pituitary-adrenal axis, promoting the intake of palatable foods, which activate the pleasure centers of the brain and trigger greater accumulation of adipocytes. Thus, adults who were born preterm may have increased sensitivity to stressors, leading to an overproduction of glucocorticoids, stimulating the omental population of pre-adipocytes, with increased abdominal fat deposition.

Experimental studies have brought new ideas to explain the origin of adult diseases in early life, but raised new questions. The hypotheses did not contribute to the understanding about the occurrence of these diseases in individuals born large for gestational age, as well as in fetuses with adequate weight that developed them in adulthood. Moreover, they did not explain how fetuses with intrauterine growth restriction (IUGR), with decreased insulin sensitivity in early postnatal life, developed increased resistance only in adult life, which seems to indicate loss of the metabolic process continuum, as if the latter had started only in adulthood.

To analyze the association between low birth weight and hypertension development in adulthood, Huxley et al.,31 in a meta-analysis, compared 18 articles submitted by researchers that corroborated the thrifty phenotype hypothesis with 37 studies from other researchers. Although this meta-analysis31 did not show an association between low birth weight and hypertension in adults, it did not rule out the adaptive hypotheses, and other aspects of late expression of intrauterine life determinants started to be investigated. The hypotheses were based on the idea of conservation, which did not seem to represent the overall process. Observations from the beginning of life suggested a much wider and widespread phenomenon, in which the pattern of development could be modified in any direction, depending on the stimulus.32 , 33

The epigenetic explanation, the thrifty phenotype and cardiometabolic diseases

Based on the possibility that the phenotype can generate different genotype under different environmental conditions, that is, phenotypic plasticity, Gluckman et al.34 enunciated the hypothesis of an “adaptive predictive response” to the environment. The development plasticity would be evoked by environmental alterations early in life, generating an adaptive phenotypic response, of which advantages would manifest only in later stages. Therefore, the phenotypic plasticity might have granted advantages to the human species to face environments with nutritional restriction or high-energy expenditure. However, when submitted to a different nutritional environment than the programmed one, individuals would have exacerbated responses and develop diseases in adulthood.34 The “predictive adaptive response” will be an adaptive advantage when the “prediction” about the environment is correct (match) and may determine a disadvantage when it is wrong (mismatch),34 characterizing plasticity.

Plasticity can trigger different responses with immediate expression, such as nutritional restrictions to the fetus, which reacts with a decrease in its nutritional reserves, decreased anabolism, plasma insulin, insulin-like growth factor 1 (IGF-1), and blood flow diversion to protect the heart and brain. These immediate adaptations to the restrictive environment allow adequate survival, but result in low birth weight, increased risk of morbidity and mortality, cognitive impairment, and persistent growth deficit.35

Responses aimed at ensuring survival can, however, lead to adaptive errors. Maternal hyperglycemia in early pregnancy can contribute to embryopathy, by leading to the reduction of myo-inositol, which is essential for embryonic development during gastrulation and the neurulation stages. Myo-inositol deficiency seems to disturb the phosphoinositide system, which leads to abnormalities in the arachidonic acid-prostaglandin pathways and increase in reactive oxygen substances.36 This chain of events is responsible for fetal cardiovascular abnormalities, such as transposition of the great vessels, ventricular septal defects, hypoplastic left heart syndrome, and dextrocardia.37Increased maternal glycated hemoglobin is associated with embryonic alterations in 66% of fetuses, but when lower than 9.5%, it does not alter embryogenesis,36 characterizing disruption,3 in which a hormone can trigger an undesirable effect on the response process to environmental adaptation.

Although the fetal and postnatal organisms have adaptive responses to a restrictive intrauterine environment in a continuous manner, their development has “plasticity windows”, i.e., the possibility of interference with the adaptive programming, correcting inappropriate responses.38 This hypothesis is corroborated by an experimental study comparing offspring with growth retardation, born to malnourished rats during pregnancy, to the offspring of well-nourished rats, after feeding a hypercaloric diet to the offspring without IUGR and leptin to those with IUGR. The authors verified that growth in the two groups did not differ and concluded that the increase in leptin concentration signaled the presence of an adequate amount of adipose tissue in the offspring organism and, therefore, of nutritional reserves.38

The adaptive continuity to environmental changes and “windows of opportunity” are explained by the epigenetic theory, i.e., the possibility that environmental factors interfere with gene expression. Predictive adaptive responses are modulated by covalent modifications of deoxyribonucleic acid and histones, which are necessary for the phenomenon of gene transcription, namely the synthesis of ribonucleic acid for protein synthesis.39

Evidence suggests that the fetal period is more sensitive for the occurrence of epigenetic variations that will influence cell and tissue genetic expression, sexual dimorphism and the risk of triggering disorders that will manifest later in life.40 An example of the influence of epigenetics on the early neonatal period is the effect of high-fat diets during pregnancy,41 i.e., overeating in the offspring and increased expression of orexigenic peptides promoting increase and deregulation of neonatal leptin.

The deregulation is important, because leptin is one of the first hormones synthesized during embryonic development by the placenta, by adipocytes of white adipose tissue, liver cells, cartilaginous structures and heart muscle. This molecule acts on neurogenesis, axonal growth, dendritic proliferation, synapse formation,23 in the development of neurological pathways to satiety, hunger and thermal regulation, which begins in intrauterine life and is completed in the first months of life, when supplied by breast milk.42

During the first pregnancy trimester, leptin synthesis occurs in the placenta, triggering a cascade of transcription factors in pre-adipocytes, contributing to the formation of white adipose tissue, which becomes the main source of leptin synthesis. This molecule, by crossing the blood-brain barrier, contributes to the development of several brain regions, among them the hypothalamus, where their receptors are located.23 The leptin-receptor binding is essential to indicate the need for nutrient intake and the increase in energy reserves in adipose tissue. When leptin concentrations in the hypothalamus are reduced due to binding to the receptors, the feeling of satiety is triggered by the activation of anorexigenic neurons. Thus, the phenotypic alteration of leptin receptors, characterizing leptin resistance, results in the persistence of the feeling of hunger and promotes ingestion of large quantities of nutrients and adipose tissue hypertrophy.24

The epigenesis of leptin resistance explains the increased risk of obesity in children of obese and diabetic mothers, as well as in newborns with IUGR submitted to excess nutrient intake or whose mothers were fed lipid-rich diets. In contrast, when during pregnancy and lactation, the mothers receive balanced diets, or when fetuses with IUGR are submitted to restrictive diets during the lactation period, they show normal growth of the adipose tissue, but develop post-weaning hyperphagia, attributed to phosphorylation deregulation of hypothalamic leptin receptors, reduction in anorexigenic receptors and reduction in permeability of the blood-brain barrier to this molecule.24

Epidemiological research18 has corroborated the hypothesis of adaptive predictive response,33 by demonstrating that an abundant food supply contributes to catch-up growth. However, it is also confirmed when there is absence of abdominal obesity, with normal neurodevelopment, in children receiving adequate nutrition, but not in excess. The significance of the nutrition of the newborn has been debated,43 especially for preterm ones, because there is more organic plasticity early in life. Thus, adequate interventions shortly after birth have plasticity as the possibility for correction of developmental delay, maintaining the benefits by cumulative effect. As age increases, with the decline in plasticity, nutrition that is adequate to the body's need will make the child's body composition reach the level of a child born to term, at the same age. Similarly, excess nutrition, also due to plasticity, will result in deleterious effects that will manifest throughout life.

One must consider4 the processes by which the quantity and quality of nutrients supplied to the fetus and the embryo are determined, due to their permanent effects on development, a process called nutritional programming, which depends on both maternal characteristics (before, during and after pregnancy), and fetal nutritional status.

Among the maternal and environmental characteristics that affect the fetal and newborn development are the socioeconomic and nutritional statuses, with direct effect, and maternal education, with an indirect effect. Nepalese infants born with low birth weight more frequently had mothers with low or very low socioeconomic level, low educational level and inadequate nutrition, factors that were associated with lower level of prenatal medical care.44 A population-based cohort followed between 1961 and 2000 disclosed that, in four decades, in the United Kingdom, socioeconomic inequalities still determined a higher frequency of low birth weight or premature births among mothers from the lower socioeconomic classes, even after adjusting for maternal age.44

Among the demographic and social factors are the maternal variables, such as age extremes (<20 and >30 years), low educational level, parity, short interbirth interval, drug use,45 and short stature.46 Breastfeeding is also considered, given its weak to moderate protective effect on adult obesity. Breastfeeding, by meeting the newborn's needs, reduces the risk of insulin resistance and increased intra-abdominal adiposity, and provides leptin concentrations capable of modulating the hunger-satiety mechanism.47

This evidence is consistent with the hypothesis accepted by Gluckman et al.,3 which affirms that nature directs its efforts to reproduction. Thus, if there are signs of a threatening postnatal environment, the fetus is born prematurely or smaller than expected, and in a nutrient-rich environment, unlike the planned trajectory, develops metabolic disease, in a multifactorial process in which many maternal and fetal factors interact (Fig. 3).

Figure 3. Explanatory model – cardiometabolic diseases.

Figure 3

Currently, a large number of experimental, epidemiological and clinical studies that provide a robust empirical basis contribute to a paradigm change in relation to the understanding of early origin of diseases. All this knowledge has a direct effect on the training of health care professionals, particularly, in medical training. It shows the need for apprehending several aspects of biological knowledge, especially of the evolution theory, because it is through this view that one can capture the importance of the interaction between genotype and the environment and the several mechanisms used by the body to adapt to the environment. Physicians, especially pediatricians, have a key role in this scenario, as they care for human beings at a time when there are more opportunities to act and generate changes, due to developmental plasticity.

Footnotes

Funding

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), for funding productivity grants given to Pedro Lira, Marília Lima and Giselia Alves.

Referências

  • 1.Halfon N, Larson K, Lu M, Tullis E, Russ S. Lifecourse health development: past, present, and future. Matern Child Health J. 2014;18:344–365. doi: 10.1007/s10995-013-1346-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359:61–73. doi: 10.1056/NEJMra0708473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Gluckman PD, Hanson MA, Beedle AS. Early life events and their consequences for later disease: a life history and evolutionary perspective. Am J Hum Biol. 2007;19:1–19. doi: 10.1002/ajhb.20590. [DOI] [PubMed] [Google Scholar]
  • 4.Desai M, Ross MG. Fetal programming of adipose tissue: effects of intrauterine growth restriction and maternal obesity/high-fat diet. Semin Reprod Med. 2011;29:237–245. doi: 10.1055/s-0031-1275517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Análise de Situação em Saúde . Saúde Brasil 2006: uma análise da situação de saúde no Brasil. Brasília: Ministério da Saúde; 2006. [Google Scholar]
  • 6.Suhag A, Berghella V. Intrauterine growth restriction (IUGR): etiology and diagnosis. Curr Obstet Gynecol Rep. 2013;2:102–111. [Google Scholar]
  • 7.Symonds ME, Mendez MA, Meltzer HM, Koletzko B, Godfrey K, Forsyth S, et al. Early life nutritional programming of obesity: mother-child cohort studies. Ann Nutr Metab. 2013;62:137–145. doi: 10.1159/000345598. [DOI] [PubMed] [Google Scholar]
  • 8.Unicef Low birthweight. [19 de julho de 2014]. página na Internet. Disponível em: http://www.data.unicef.org/nutrition/low-birthweight.
  • 9.World Health Organization Obesity and overweight. [19 de julho de 2014]. página na Internet. Disponível em: http://www.who.int/mediacentre/factsheets/fs311/en/
  • 10.Kermack WO, McKendrick AG, McKinlay PL. Death-rates in Great Britain and Sweden: some general regularities and their significance. Lancet. 1934;31:698–703. doi: 10.1093/ije/30.4.678. [DOI] [PubMed] [Google Scholar]
  • 11.Kermack WO, McKendrick AG, McKinlay PL. Death-rates in Great Britain and Sweden: expression of specific mortality rates as products of two factors, and some consequences thereof. J Hyg (Lond) 1934;4:433–457. doi: 10.1017/s0022172400043230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Walton A, Hammond J. The maternal effects on growth and conformation in shire horse-shetland pony crosses. Proc R Soc Lond B. 1938;125:311–335. [Google Scholar]
  • 13.Neel JV. Diabetes mellitus: a thrifty genotype rendered detrimental by progress? Am J Hum Genet. 1962;14:353–362. [PMC free article] [PubMed] [Google Scholar]
  • 14.Lumey LH, Poppel FW Van. The Dutch Famine of 1944-45 as a human laboratory: changes in the early life environment and adult health. In: Lumey L, Vaiserman A, editors. Early life nutrition and adult health and development: lessons from changing dietary patterns, famines, and experimental studies. London: Nova; 2013. pp. 59–76. [Google Scholar]
  • 15.Forsdahl A. Are poor living conditions in childhood and adolescence an important risk factor for arteriosclerotic heart disease? Br J Prev Soc Med. 1977;31:91–95. doi: 10.1136/jech.31.2.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Barker DJ. The intrauterine origins of cardiovascular and obstructive lung disease in adult life. The Marc Daniels Lecture 1990. J R Coll Physicians Lond. 1991;25:129–133. [PMC free article] [PubMed] [Google Scholar]
  • 17.Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C, Osmond C, et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ. 1991;303:1019–1022. doi: 10.1136/bmj.303.6809.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Ong KE, Loos RJ. Rapid infancy weight gain and subsequent obesity: systematic reviews and hopeful suggestions. Acta Pediatr. 2006;95:904–908. doi: 10.1080/08035250600719754. [DOI] [PubMed] [Google Scholar]
  • 19.Hofman PL, Regan F, Jackson WE, Jefferies C, Knight DB, Robinson EM, et al. Premature birth and later insulin resistance. N Engl J Med. 2004;351:2179–2186. doi: 10.1056/NEJMoa042275. [DOI] [PubMed] [Google Scholar]
  • 20.Ong KK, Dunger DB. Birth weight, infant growth and insulin resistance. Eur J Endocrinol. 2004;151(Suppl 3):U131–U139. doi: 10.1530/eje.0.151u131. [DOI] [PubMed] [Google Scholar]
  • 21.Boersma B, Wit JM. Catch-up growth. Endocr Rev. 1997;18:646–661. doi: 10.1210/edrv.18.5.0313. [DOI] [PubMed] [Google Scholar]
  • 22.Prader A, Tanner JM, von Harnack G. Catch-up growth following illness or starvation. An example of developmental canalization in man. J Pediatr. 1963;62:646–659. doi: 10.1016/s0022-3476(63)80035-9. [DOI] [PubMed] [Google Scholar]
  • 23.Djiane J, Attig L. Role of leptin during perinatal metabolic programming and obesity. J Physiol Pharmacol. 2008;59(Suppl 1):55–63. [PubMed] [Google Scholar]
  • 24.Parlee SD, MacDougald OA. Maternal nutrition and risk of obesity in offspring: the Trojan horse of developmental plasticity. Biochim Bophysica Acta. 2014;1842:495–506. doi: 10.1016/j.bbadis.2013.07.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Bertotto ML, Valmórbida J, Broilo MC, Campagnolo PD, Vitolo MR. Association between weight gain in the first year of life with excess weight and abdominal adiposity at preschol age. Rev Paul Pediatr. 2012;30:507–512. [Google Scholar]
  • 26.Yeung MY. Postnatal growth, neurodevelopment and altered adiposity after preterm birth-from a clinical nutrition perspective. Acta Pediatr. 2006;95:909–917. doi: 10.1080/08035250600724507. [DOI] [PubMed] [Google Scholar]
  • 27.Uthaya S, Thomas EL, Hamilton G, Doré CJ, Bell J, Modi N. Altered adiposity after extremely preterm birth. Pediatr Res. 2005;57:211–215. doi: 10.1203/01.PDR.0000148284.58934.1C. [DOI] [PubMed] [Google Scholar]
  • 28.Ibáñez L, Ong K, Dunger DB, Zegher F. Early development of adiposity and insulin resistance after catch-up weight gain in small-for-gestational-age. JCEM. 2006;91:2153–2158. doi: 10.1210/jc.2005-2778. [DOI] [PubMed] [Google Scholar]
  • 29.Beltrand J, Nicolescu R, Kaguelidou F, Verkauskiene R, Sibony O, Chevenne D, et al. Catch-up growth following fetal growth restriction promotes rapid restoration of fat mass but without metabolic consequences at one year of age. PLoS One. 2009;4:E5343–E5350. doi: 10.1371/journal.pone.0005343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Thomas EL, Al Saud NB, Durighel G, Frost G, Bell JD. The effect of preterm birth on adiposity and metabolic pathways and the implications for later life. Clin Lipidol. 2012;7:275–288. [Google Scholar]
  • 31.Huxley R, Neil A, Collins R. Unravelling the fetal origins hypothesis: is there really an inverse association between birthweight and subsequent blood pressure? Lancet. 2002;360:659–665. doi: 10.1016/S0140-6736(02)09834-3. [DOI] [PubMed] [Google Scholar]
  • 32.Gluckman PD, Hanson MA, Spencer HG, Bateson P. Environmental influences during development and their later consequences for health and disease: implications for the interpretation of empirical studies. Proc Biol Sci. 2005;272:671–677. doi: 10.1098/rspb.2004.3001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Gluckman PD, Hanson MA. The developmental origins of the metabolic syndrome. Trends Endocrinol Metab. 2004;15:183–187. doi: 10.1016/j.tem.2004.03.002. [DOI] [PubMed] [Google Scholar]
  • 34.Gluckman PD, Hanson MA, Spencer HG. Predictive adaptive responses and human evolution. Trends Ecol Evol. 2005;20:527–533. doi: 10.1016/j.tree.2005.08.001. [DOI] [PubMed] [Google Scholar]
  • 35.Wilcox A. On the importance-and the unimportance-of birthweight. Int J Epidemiol. 2001;30:1233–1241. doi: 10.1093/ije/30.6.1233. [DOI] [PubMed] [Google Scholar]
  • 36.Gilbert-Barness E. Teratogenic causes of malformations. Ann Clin Lab Sci. 2010;40:99–114. [PubMed] [Google Scholar]
  • 37.Hornberger LK. Maternal diabetes and the fetal heart. Heart. 2006;92:1019–1021. doi: 10.1136/hrt.2005.083840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Vickers M, Gluckman PD, Coveny A, Hofman PL, Cutfield W, Gertler A, et al. Neonatal leptin treatment reverses developmental programming. Endocrinology. 2005;146:4211–4216. doi: 10.1210/en.2005-0581. [DOI] [PubMed] [Google Scholar]
  • 39.Fu Q, Yu X, Callaway CW, Lane RH, McKnight RA. Epigenetics: intrauterine growth retardation (IUGR) modifies the histone code along the rat hepatic IGF-1 gene. FASEB J. 2009;23:2438–2449. doi: 10.1096/fj.08-124768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Bogdarina I, Welham S, King PJ, Burns SP, Clark AJ. Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ Res. 2007;100:520–526. doi: 10.1161/01.RES.0000258855.60637.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Leibowitz SF, Chang GQ, Dourmashkin JT, Yun R, Julien C, Pamy PP. Leptin secretion after a high-fat meal in normal-weight rats: strong predictor of long-term body fat accrual on a high-fat diet. Am J Physiol Endocrinol Metab. 2006;290:E258–E267. doi: 10.1152/ajpendo.00609.2004. [DOI] [PubMed] [Google Scholar]
  • 42.Pico C, Palou A. Perinatal programming of obesity: an introduction to the topic. Front Physiol. 2013;4:255. doi: 10.3389/fphys.2013.00255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Hanson M, Godfrey KM, Lillycrop KA, Burdge GC, Gluckman PD. Developmental plasticity and developmental origins of non-communicable disease: theoretical considerations and epigenetic mechanisms. Prog Biophys Mol Biol. 2011;106:272–280. doi: 10.1016/j.pbiomolbio.2010.12.008. [DOI] [PubMed] [Google Scholar]
  • 44.Kehinde OA, Njokanma OF, Olanrewaju D. Parental socioeconomic status and birth weight distribution of Nigerian term newborn babies. Niger J Paed. 2013;40:299–302. [Google Scholar]
  • 45.Perez-Pereira M, Fernandez P, Gómez-taibo M, Gonzalez L, Trisac JL, Casares J, et al. Neurobehavioral development of preterm and full term children: biomedical and environmental influences. Early Hum Dev. 2013;89:401–409. doi: 10.1016/j.earlhumdev.2012.12.008. [DOI] [PubMed] [Google Scholar]
  • 46.Addo OY, Stein AD, Fall CH, Gigante DP, Guntupalli AM, Horta BL, et al. Maternal height and child growth patterns. J Pediatr. 2013;163:549–554. doi: 10.1016/j.jpeds.2013.02.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Rotteveel J, van Weissenbruch MM, Twisk JW, Delemarre-Van de Waal HA. Infant and childhood growth patterns, insulin sensitivity, and blood pressure in prematurely born young adults. Pediatrics. 2008;122:313–321. doi: 10.1542/peds.2007-2012. [DOI] [PubMed] [Google Scholar]
Rev Paul Pediatr. 2015 Jul-Sep;33(3):340–348. [Article in Portuguese]

Baixo peso ao nascer e obesidade: associação causal ou casual?

Adolfo Monteiro Ribeiro a,*, Marília de Carvalho Lima a, Pedro Israel Cabral de Lira a, Giselia Alves Pontes da Silva a

Abstract

Objetivo:

Apresentar as bases conceituais que explicam como eventos na vida intrauterina podem influenciar o desenvolvimento corporal e enfatizar a interrelação entre baixo peso ao nascer e risco de obesidade ao longo da vida.

Fontes de dados:

Google Scholar, Scientific Electronic Libraty Online (SciELO), EBSCO, Scopus e PubMed foram as bases de dados. “Catch-up growth”, “lifecourse health”, “disease”, “child”, “development”, “early life”, “perinatal programming”, “epigenetics”, “breastfeeding”, “small baby syndrome”, “phenotype”, “micronutrients”, “maternal nutrition”, “obesity” e “adolescence” foram descritores isolados ou associados para localizar revisões, estudos epidemiológicos, de intervenção ou experimentais publicados entre 1934 e 2014, com textos integrais, em português e inglês. Excluíram-se duplicidades, editoriais, resenhas e abordagens de doença diferente da obesidade.

Síntese dos dados:

Nos 47 artigos selecionados dentre 538 elegíveis, identificaram-se as hipóteses do fenótipo poupador, dos mecanismos epigenéticos e da plasticidade do desenvolvimento como fundamentais para explicar mecanismos envolvidos na saúde e nas doenças durante a vida. Elas admitem a possibilidade de eventos cardiometabólicos e obesidade terem origem em deficiência intraútero de nutrientes que, associados a suprimento alimentar excessivo às necessidades metabólicas nas fases precoces da vida, provoca alterações endócrinas. Todavia pode haver reprogramação fenotípica que supere ambiente restritivo intrauterino para nascidos com baixo peso a partir de oferta nutricional adequada. Assim, o catch-up growth indicaria recuperação da restrição intrauterina e se associaria a benefícios em curto prazo ou prejuízos no adulto.

Conclusões:

Na dependência de adequação nutricional nos primeiros anos de vida, a plasticidade do desenvolvimento pode levar à reprogramação fenotípica e reduzir o risco de obesidade.

Keywords: Desenvolvimento humano, Baixo peso ao nascer, Nutrição, Obesidade, Saúde, Doença

Introdução

O conhecimento dos processos envolvidos no desenvolvimento humano contribui para melhor entendimento dos mecanismos associados à saúde e à doença ao longo da vida.1 Identificar quais são, quando e como atuam esses mecanismos é provavelmente o melhor meio para evitar que as doenças se instalem. Apenas nos últimos anos várias doenças que acometem adultos têm sido relacionadas a eventos do período intrauterino.2 - 4

Embora exames complementares forneçam informações que possibilitam acompanhar o desenvolvimento fetal, a obtenção de dados ao nascimento proporciona melhores condições de avaliação. A adequação do peso à idade gestacional é a primeira medida capaz de fornecer informações sobre a interação fetal com o ambiente intrauterino.5

O feto reflete, por meio da nutrição, do crescimento e da composição corporal, os suprimentos e a energia que recebe da mãe e expressa igualmente sua dependência da função placentária.6 Também recebe um fluxo de mediadores químicos, os quais informam sobre o estado nutricional da mãe e possivelmente a qualidade do ambiente pós-natal.3 Essas informações contribuem para moldar a composição e o tamanho do corpo, como também para a estruturação dos sistemas endócrino e metabólico.7

O Fundo das Nações Unidas para a Infância8informa que a incidência mundial de baixo peso ao nascer se manteve em 15% de 2008 a 2012, apesar dos avanços no cuidado pré-natal. A Organização Mundial de Saúde9 afirma que mais de 40 milhões de crianças com menos de cinco anos apresentam sobrepeso ou obesidade e, portanto, estão expostas a maior risco de doenças não transmissíveis. Essas estatísticas reforçam a relevância de abordar as interrelações entre baixo peso ao nascer e o risco de ocorrência da obesidade e suas comorbidades ao longo da vida, considerando que essa compreensão é a base para que se instituam precocemente intervenções que possam mudar a história natural desse processo.

Nesta revisão, objetivou-se apresentar as bases conceituais e empíricas que embasam o entendimento sobre a interferência de eventos da vida intrauterina sobre o desenvolvimento corporal e enfatizar a interrelação entre baixo peso ao nascer e obesidade ao longo da vida.

Método

Procedeu-se à revisão do tipo narrativa, com o emprego dos descritores “catch-up growth”, “lifecourse health”, “disease”, “child”, “development”, “human evolution”, “adaptative”, “infant”, “early life”, “birth”, “weight”, “perinatal programming”, “epigenetics”, “breastfeeding”, “small baby syndrome”, “phenotype”, “micronutrients”, “maternal nutrition”, “fetus”, “obesity” e “adolescence”, isolados ou associados, nas bases de dados Google Scholar, Scientific Electronic Library Online (SciELO), EBSCO, Scopus e PubMed, para localização de artigos publicados.

Os critérios de inclusão foram artigos de revisão, estudos epidemiológicos, de intervenção ou experimentais publicados entre 1934 e 2014, com textos integrais em português ou inglês, que abordassem aspectos do desenvolvimento intrauterino e sua relação com obesidade. Foram excluídos resumos ou artigos publicados em duplicidade, referentes a diagnóstico ou tratamento de doença específica diferente da obesidade, editoriais e resenhas.

Os resumos que obedeciam aos critérios de inclusão foram analisados por dois revisores independentes com conhecimento do tema central da revisão, para determinação consensual dos artigos que seriam lidos na íntegra.

Resultados

Foram localizados 538 resumos, dos quais 330 foram excluídos. Resultou-se na análise de textos integrais de 208 artigos. Aplicados os critérios de inclusão e de exclusão, resultaram 47 artigos elegíveis que integraram a revisão (fig. 1) e com os quais se elaborou o glossário exposto na tabela 1.

Figura 1. Fluxograma de seleção de artigos para integrar a revisão.

Figura 1

Tabela 1. Glossário de termos e conceitos adotados nesta revisão.

Termos Conceitos
Catch‐up growth Período de rápido ganho de peso e/ou de aceleração na velocidade de crescimento que ocorre após um período de desaceleração
Epigenética Estudo das alterações na expressão do gene que podem ser transmitidas a prole e que não implicam alteração na sequência do DNA
Hipótese do fenótipo econômico (thrifty phenotype hypothesis) Quando o ambiente fetal é pobre do ponto de vista nutricional o organismo fetal passa por um processo de programação no qual há uma proteção em relação ao desenvolvimento de alguns órgãos (cérebro, coração), mas leva a alterações metabólicas que podem repercutir em fases mais avançadas da vida
Plasticidade fenotípica A capacidade do organismo a partir de um único genótipo desenvolver fenótipos variados em resposta a diferentes estímulos ambientais
Programação fetal Alterações estruturais e funcionais que ocorrem no organismo fetal em resposta a estímulos ocorridos em períodos críticos do desenvolvimento
Respostas adaptativas preditivas Um processo por meio do qual o organismo nas fases precoces do desenvolvimento a partir da percepção que tem dos estímulos ambientais prediz o ambiente ao qual será exposto no futuro e o modifica fenotipicamente

Primeiras evidências e a hipótese do fenótipo poupador

A influência de fatores presentes no início da vida foi identificada em relatos que analisavam a taxa de mortalidade por todas as causas no Reino Unido e na Suécia, de 1845 a 1925, na faixa de 10 a 100 anos, do que derivou a hipótese de que uma modificação no meio ambiente poderia contribuir para reduzir a mortalidade.10 , 11 A não comprovação da hipótese motivou incluir no estudo de mortalidade a faixa de cinco a 10 anos. Dessa feita, foi evidenciada associação entre melhoria nas condições de vida das crianças e dos adolescentes e queda da taxa de mortalidade geral em ambos os países. Isso sugere que a melhoria das condições ambientais no período gestacional podia interferir diretamente sobre a saúde de crianças nas faixas etárias mais jovens.11

Estudos em equinos12 demonstraram a influência do organismo materno sobre o feto, independentemente do fator genético. Fetos de animais grandes implantados em útero de espécies pequenas resultavam em potros menores do que o esperado, assim como fetos gerados em equinos pequenos apresentavam desenvolvimento maior, quando implantados em éguas grandes.

No contexto dessas ideias, Neel13 publicou observações sobre os efeitos da privação nutricional materna sobre o feto. Teorizou que conceptos desenvolviam metabolismo direcionado a poupar energia e que era importante a resistência insulínica, a qual estaria relacionada à mutação genética aleatória.13 A preponderância desse “genótipo poupador” perduraria e seria transmitido a gerações futuras e, assim, o consumo de alimentos em abundância acarretaria obesidade por acúmulo excessivo de reservas.

O efeito da escassez alimentar durante o cerco alemão à Holanda na Segunda Guerra Mundial14 fez com que mulheres sofressem o impacto da desnutrição durante o período gestacional. A análise desse experimento natural pôs em dúvida a hipótese de Neel,13pois a privação de nutrientes levou a efeitos diversos do esperado. Os fetos que sofreram desnutrição no primeiro trimestre desenvolveram obesidade na idade adulta, enquanto que a restrição após a fase inicial da gestação não se associou ao mesmo efeito. Ainda que se admitisse a importância dos estímulos ambientais na ocorrência da obesidade, o fator genético não podia ser desprezado.

Um estudo norueguês15 reforçou a importância das condições nutricionais na infância na gênese das doenças do adulto. Considerando a geração de indivíduos nascidos entre 1896 e 1925, foi constatado que maior mortalidade nos adultos ocorria nos condados com maior mortalidade infantil e tinha como fatores de risco o aumento do colesterol sanguíneo e o consumo de dieta rica em gordura, bem como a condição social dos indivíduos, o tabagismo e o tipo de nutrição. Em relação à contribuição da dieta rica em gordura para o aumento do colesterol, o estudo identificou comportamento distinto segundo a condição socioeconômica dos indivíduos. Aqueles que vivenciaram condição de pobreza anterior apresentavam aumento de colesterol relacionado à dieta rica em gordura, o que não ocorria naqueles com vida financeiramente estável.15 Essas constatações embasaram a hipótese de que o período de privação contribuiu para que os indivíduos desenvolvessem “intolerância à gordura” e ficassem expostos a um maior risco de morte quando recebiam dieta abundante.

Além das hipóteses de intolerância à gordura e do genótipo poupador, uma coorte em Hertfordshire16 , 17 demonstrou a associação entre o baixo peso ao nascer e o óbito por doença coronariana na idade adulta. Dentre os nascidos com baixo peso, eram mais frequentes fatores de risco para doenças cardiovasculares e metabólicas.17 Adicionalmente, Barker16 propôs que o feto responde com retardo no crescimento quando há déficit de nutrientes em seu ambiente, o qual se associa à diminuição da sensibilidade à insulina e lhe proporcionam melhor condição de sobrevivência. Essa adaptação prediz, também na vida adulta, a manutenção de ambiente com pouca oferta de nutrientes. Caso tal situação não se concretize, a oferta abundante de alimentos gera um desequilíbrio que pode acarretar doenças cardiometabólicas. Esse contexto deu origem à hipótese do fenótipo poupador16 e, posteriormente, à resposta adaptativa preditiva,3 que estão representadas na figura 2.

Figura 2. Hipótese do fenótipo poupador e da resposta adaptativa preditiva.

Figura 2

Situações relativas a alterações do peso ao nascer reforçam sua importância como marco indicativo do ambiente intrauterino e preditor de doenças cardiometabólicas na adolescência e na fase adulta.18 - 20 Assim sendo, o peso ao nascer pode ter origem constitucional ou ser secundário à privação nutricional intraútero, o que leva a uma restrição de crescimento fetal. Admite-se que, em recém-nascidos com baixo peso, atuam diferentes mecanismos de adaptação ao ambiente extrauterino, dentre os quais o aumento do metabolismo dos carboidratos e o consequente aumento da adiposidade, que aumenta o risco futuro de doenças crônicas, como resistência à insulina, obesidade e diabetes tipo 2.19 Esses mecanismos levam a níveis elevados de leptina, secundário a um aumento da resistência em nível dos seus receptores, relacionados à falta de saciedade no início da vida, a qual se associa à obesidade e aos distúrbios metabólicos na adolescência e na idade adulta, quando esses neonatos são expostos a ambiente nutricional com oferta excessiva de nutrientes, nos primeiros anos de vida.20

Ao sair de situação restritora de crescimento, por questões hormonais ou nutricionais, para outra com oferta adequada de nutrientes, pode ocorrer recuperação acelerada do crescimento para alcançar o potencial geneticamente determinado,21 denominado catch-up growth. 22

Catch-up growth pode ser definido como a velocidade de ganho de peso e/ou de crescimento maior que os limites estatísticos de normalidade para idade e maturidade, durante um período de tempo definido, o qual se segue um período de inibição transitória do crescimento.21 O catch-up growth é um processo fisiológico relativo à recuperação do tamanho de um organismo submetido à restrição, para que ele alcance o tamanho próprio para idade, sexo e grau de maturação, na dependência da ação do eixo somatotrófico, com aumento dos receptores hormonais.21

Essa recuperação, derivada de condições desfavoráveis ao crescimento durante o período pré-natal e pós-natal precoce, pode influenciar o risco de desenvolvimento de doenças cardiometabólicas ao longo da vida.23 , 24 No entanto, a recuperação do crescimento em curto prazo oferece vantagens para o neurodesenvolvimento, particularmente para crianças nascidas com muito baixo peso, assim como contribui para o aumento da resistência às infecções. Daí decorre a questão de identificar se os benefícios do aumento da velocidade do crescimento podem ocorrer sem consequências metabólicas adversas.18

Admite-se que um catch-up growth maior do que 0,67 desvio padrão estaria associado à obesidade central25 e ao desencadeamento da resistência insulínica, que leva a aumento compensatório da secreção de insulina, mesmo em recém-nascidos com baixo peso que apresentaram aumento da velocidade de crescimento, mas permanecem pequenos durante a infância. Mesmo que essas crianças aumentem a velocidade de crescimento, elas apresentam hiperinsulinemia compensatória em maior grau do que crianças bem nutridas ou excessivamente alimentadas. Dessa forma, a hiperinsulinemia secundária à resistência à insulina poderia ser a explicação central da gênese da síndrome metabólica.26

A resistência à insulina nos nascidos pré-termo se associa à hipersecreção do hormônio do crescimento e à redução da concentração do IGF-1, as quais persistem por três meses após o nascimento na ausência de suprimento nutricional adequado. Esse estado endócrino alterado favorece redução do tecido adiposo subcutâneo, com relativa adiposidade visceral, um marcador de resistência insulínica, dislipidemia e presença de outros componentes da síndrome metabólica.27

Apesar dessas observações, ainda não está evidenciado se a deposição de obesidade central, mais do que adiposidade subcutânea, é função da prematuridade, do nascimento com tamanho pequeno para idade gestacional ou do catch-up growth. Estudos demonstram que neonatos com crescimento restrito ao nascimento têm redução da gordura subcutânea, porém mantêm níveis de gordura abdominal similares aos de recém-nascidos adequados para a idade gestacional.28 Estudo de coorte feito para investigar a associação entre crescimento fetal e pós-natal precoce e modificações metabólicas e antropométricas comprovou que o catch-up growth relacionou-se ao padrão de crescimento fetal, independentemente do peso ao nascer, e se associou com maior sensibilidade insulínica e concentrações mais baixas de leptina ao nascimento. Dessa forma, o catch-up growth promoveria a restauração do tamanho corporal e dos estoques de gordura sem consequências deletérias no perfil metabólico e na composição corporal, após um ano de idade.29

Recentemente, fez-se uma revisão30 em busca das evidências sobre a relação entre baixo peso, resistência insulínica e diabete tipo 2 em adultos, à luz da composição corporal e das vias metabólicas. A base empírica mostra uma relação multifatorial e aponta que, em algumas crianças e adultos nascidos pré-termo, a resistência insulínica e o aumento da adiposidade abdominal são derivados da variação do gene do receptor de glicocorticoide. Maiores concentrações de glicocorticoides ativam o eixo hipotálamo-pituitária-adrenal e promovem ingestão de alimentos palatáveis, os quais ativam os centros de prazer do cérebro e desencadeiam maior acúmulo de adipócitos. Assim, adultos nascidos pré-termo podem ter sensibilidade aumentada a estressores, o que leva à superprodução de glicocorticoides e ao estímulo da população omental de pré-adipócitos, com maior deposição de gordura abdominal.

Estudos experimentais trouxeram novas ideias para explicar a origem das doenças do adulto no início da vida, mas suscitaram novos questionamentos. As hipóteses não contribuíram para o entendimento da ocorrência dessas doenças em nascidos grandes para a idade gestacional, bem como em conceptos com peso adequado, mas que as desenvolveram na fase adulta. Não explicavam como fetos com restrição de crescimento intrauterino (RCIU), com sensibilidade diminuída à insulina no início da vida pós-natal, desenvolviam resistência aumentada apenas na vida adulta, o que parecia indicar perda do continuum do processo metabólico, como se tivesse início apenas na fase adulta.

Para analisar a relação entre baixo peso ao nascer e desenvolvimento de hipertensão arterial no adulto, Huxley et al.,31 em metanálise, confrontaram 18 trabalhos apresentados por pesquisadores que corroboravam a hipótese do fenótipo poupador com 37 trabalhos de outros pesquisadores. Embora essa metanálise31 não tenha mostrado relação do baixo peso ao nascer com hipertensão arterial em adultos, não afastou as hipóteses adaptativas e outros aspectos da expressão tardia de determinações da vida intrauterina passaram a ser pesquisados. As hipóteses se baseavam na ideia de poupar, o que não parecia representar o processo geral. As observações desde o início da vida sugeriam um fenômeno muito mais amplo e generalizado. O padrão de desenvolvimento poderia ser modificado em qualquer direção a depender do estímulo.32 , 33

A explicação epigenética, o fenótipo poupador e as doenças cardiometabólicas

A partir da possibilidade de o genótipo gerar diferentes fenótipos em diferentes condições ambientais, ou seja, da plasticidade fenotípica, Gluckman et al.34 enunciaram a hipótese de uma “resposta preditiva adaptativa” ao meio ambiente. A plasticidade do desenvolvimento seria evocada por alterações do meio ambiente no início da vida e geraria resposta fenotípica adaptativa cujas vantagens se manifestariam apenas em fases mais tardias. Dessa forma, a plasticidade fenotípica pode ter conferido vantagens à espécie humana para enfrentar ambientes com restrição nutricional ou alto gasto de energia. Todavia, quando submetidos a ambiente diferente em nutrientes do programado, os indivíduos teriam resposta exacerbada e desenvolveriam doenças na fase adulta.34 A “resposta adaptativa preditiva” significará uma vantagem adaptativa quando a “previsão” sobre o ambiente estiver correta (match) e poderá determinar desvantagem quando estiver errada (mismatch),34 o que caracteriza a plasticidade.

A plasticidade pode desencadear diversas respostas com expressão imediata, como nas restrições de nutrição ao feto, que reage com diminuição de suas reservas nutricionais, diminuição do anabolismo, da insulina plasmática, do fator de crescimento insulina-like tipo 1 (IGF-1) e desvio de fluxo sanguíneo para proteger coração e cérebro. Essas adaptações imediatas ao ambiente restritivo permitem a sobrevivência adequada, porém resultam em baixo peso ao nascer, maior risco de morbimortalidade, dificuldade cognitiva e déficit de crescimento persistente.35

Respostas que visam a assegurar a sobrevivência podem, entretanto, acarretar erros adaptativos. A hiperglicemia materna no início da gestação pode contribuir para embriopatia por levar à redução de mioinositol, essencial ao desenvolvimento embrionário durante a gastrulação e os estágios de neurulação. A deficiência de mionositol parece perturbar o sistema fosfoinositídeo que leva a anormalidades nas vias do ácido aracdônico-prostaglandinas e aumento de substâncias oxigênio-reativas.36 Essa cadeia de eventos é responsável por alterações cardiovasculares fetais, tais como transposição de grandes vasos, defeitos septais ventriculares, síndrome do coração esquerdo hipoplásico e dextrocardia.37 O aumento da hemoglobina glicada materna se associa a alterações embriológicas em 66% dos fetos, mas quando inferior a 9,5% não altera a embriogênese,36 o que caracteriza a disruptura,3na qual um hormônio pode desencadear efeito indesejável no processo de resposta a uma adaptação ambiental.

Apesar de o organismo fetal e o pós-natal apresentarem respostas adaptativas ao ambiente intrauterino restritivo de modo contínuo, seu desenvolvimento apresenta “janelas de plasticidade”, ou seja, a possibilidade de interferência na programação adaptativa que corrige respostas inadequadas.38 Essa hipótese é corroborada em estudo experimental que comparou filhotes com retardo de crescimento, nascidos de ratas desnutridas durante a gestação, com a prole de ratas nutridas, após a administração de dieta hipercalórica aos filhotes sem RCIU e leptina aos filhotes com RCIU. Os autores comprovaram que o crescimento dos dois grupos não diferiu e concluíram que o aumento da concentração de leptina sinalizou para o organismo dos filhotes a presença de tecido adiposo em quantidade adequada e, portanto, de reservas nutricionais.38

A continuidade adaptativa às modificações do ambiente e as “janelas de oportunidade” são explicadas pela teoria epigenética, ou seja, a possibilidade de fatores ambientais intervirem na expressão gênica. Respostas adaptativas preditivas são moduladas por modificações covalentes do ácido desoxirribonucleico e das histonas, necessárias ao fenômeno da transcrição gênica, ou seja, de síntese de ácido ribonucleico para a síntese proteica.39

Evidências sugerem que o período fetal é o mais sensível para o estabelecimento das variações epigenéticas que vão influenciar na expressão genética celular e tecidual, no dismorfismo sexual e no risco de iniciar distúrbios que irão se manifestar posteriormente.40 Exemplo da influência da epigênese no período neonatal precoce é o efeito de dietas ricas em gordura na gravidez,41 ou seja, excesso de alimentação na prole e expressão aumentada de peptídeos orexígenos promovem aumento e desregulação da leptina neonatal.

É importante a desregulação, porque a leptina é um dos primeiros hormônios sintetizados durante o desenvolvimento embriológico pela placenta, pelos adipócitos do tecido gorduroso branco, por células hepáticas, estruturas cartilaginosas e músculo cardíaco. Essa molécula atua na neurogênese, no crescimento axonal, na proliferação dendrítica, na formação de sinapses,23 no desenvolvimento das vias neurológicas para saciedade, fome e regulação térmica, a qual se inicia na vida intrauterina e se completa nos primeiros meses de vida, quando suprida pelo leite materno.42

Durante o primeiro trimestre gestacional, a síntese de leptina ocorre na placenta, desencadeia uma cascata de fatores de transcrição nos pré-adipócitos e contribui para formação do tecido adiposo branco, que passa a ser a principal sede de síntese leptínica. Essa molécula, que cruza a barreira hematoencefálica, contribui para o desenvolvimento de diversas regiões cerebrais, dentre as quais o hipotálamo, no qual estão localizados seus receptores.23 A ligação leptina-receptor é essencial para indicar necessidade de ingestão de nutrientes e de aumento das reservas energéticas no tecido adiposo. Quando a concentração de leptina no hipotálamo é reduzida, em virtude de ligação aos receptores, desencadeia-se a sensação de saciedade pela ativação de neurônios anorexígenos. Assim, a alteração fenotípica dos receptores de leptina, que caracteriza resistência à leptina, acarreta a manutenção da sensação de fome e favorece ingestão de grandes quantidades de nutrientes e a hipertrofia do tecido adiposo.24

A epigênese da resistência leptínica explica o aumento do risco de obesidade em filhos de mães obesas e diabéticas, assim como em recém-nascidos com RCIU submetidos à alimentação exagerada ou cujas mães foram alimentadas com dietas ricas em lipídeos. Em contraste, quando no período gestacional e de lactação as mães recebem dietas balanceadas ou quando conceptos com RCIU são submetidos a dietas restritivas no período lactacional, esses apresentam crescimento do tecido adiposo normal, mas desenvolvem hiperfagia pós-desmame, atribuída à desregulação da fosforilação dos receptores hipotalâmicos da leptina, pela redução de receptores anorexígenos e pela redução da permeabilidade da barreira hematoencefálica a essa molécula.24

Pesquisas epidemiológicas18 têm corroborado a hipótese da resposta preditiva adaptativa,33ao demonstrar que uma oferta alimentar abundante contribui para o catch-up growth. Todavia, ela é confirmada também quando se verifica ausência de obesidade abdominal, com neurodesenvolvimento normal, em crianças que recebem nutrição adequada, porém não excessiva. Argumenta-se43 sobre o valor da nutrição do recém-nascido, especialmente quando pré-termo, pois no início da vida há maior plasticidade orgânica. Assim, intervenções adequadas logo após o nascimento têm na plasticidade a possibilidade de correção de retardo de desenvolvimento e mantêm os benefícios por efeito cumulativo. À medida que a idade avança, com o declínio da plasticidade, a nutrição adequada às necessidades do organismo fará com que sua composição corporal atinja o nível de uma criança a termo, na mesma idade. Analogamente, nutrição demasiada, também pela plasticidade, fará com que efeitos deletérios se manifestem ao longo da vida.

Há que se considerar4 os processos pelos quais são determinadas a quantidade e a qualidade dos nutrientes fornecidos ao feto e ao concepto, devido a seus efeitos permanentes sobre o desenvolvimento, processo denominado programação nutricional, que depende de características maternas antes, durante e após a gravidez, por um lado, e de condições nutricionais fetais, por outro.

Dentre as características maternas e de seu entorno que interferem sobre o desenvolvimento fetal e do recém-nascido, estão as condições socioeconômicas e nutricionais, com efeito direto, e as educacionais, com efeito indireto. Neonatos nepalenses nascidos com baixo peso mais frequentemente tinham mães com nível socioeconômico baixo ou muito baixo, pouca escolaridade e nutrição inadequada, fatores aos quais se associavam a menor busca por assistência médica pré-natal.44 Coorte de base populacional, com seguimento entre 1961 a 2000, revelou que, em quatro décadas, no Reino Unido, as desigualdades socioeconômicas ainda determinavam a maior frequência de nascimentos de baixo peso ou prematuros dentre mães de classes mais pobres, mesmo após ajuste para idade materna.44

Dentre os fatores demográficos e sociais, estão variáveis maternas, como: idade em extremos (<20 e >30 anos), baixa escolaridade, paridade, intervalo interpartal curto, uso de drogas45 e baixa estatura.46 Também se considera a amamentação, dado seu efeito protetor fraco a moderado sobre a obesidade no adulto. A amamentação, ao suprir as necessidades do neonato, reduz o risco de resistência à insulina e do aumento da adiposidade intra-abdominal, bem como fornece concentrações de leptina capazes de modular o mecanismo de fome-saciedade.47

Essas evidências estão de acordo com a hipótese aceita por Gluckman et al.,3 segundo a qual a natureza direciona esforços para a reprodução. Assim, se há sinais de ambiente pós-natal ameaçador, o feto nasce prematuro ou menor do que o esperado e, em um ambiente enriquecido, diferentemente da trajetória prevista, desenvolve doenças metabólicas num processo multifatorial em que os diversos fatores maternos e fetais interagem (fig. 3).

Figura 3. Modelo explicativo – Doenças cardiometabólicas.

Figura 3

Hoje, o número considerável de estudos experimentais, epidemiológicos e clínicos que fornecem uma base empírica robusta contribui para uma mudança de paradigma em relação ao entendimento da origem precoce das doenças. Todo esse conhecimento tem uma implicação direta na formação dos profissionais na área da saúde e, de modo especial, na formação do médico. Mostra a necessidade de apropriação de diversos aspectos do conhecimento biológico, de modo especial da teoria evolucionista, pois é sob esse olhar que se apreende a importância da interação entre o genótipo e o ambiente e os vários mecanismos de que o organismo lança mão para se adaptar ao meio. O médico, de forma especial o pediatra, tem um papel fundamental, pois cuida do ser humano no período em que há as maiores oportunidades de atuar e provocar mudanças, por conta da plasticidade do desenvolvimento.

Footnotes

Financiamento

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), pelo financiamento de bolsas de auxílio fornecidos a Pedro Lira, Marília Lima e Giselia Alves.


Articles from Revista Paulista de Pediatria are provided here courtesy of Sociedade De Pediatria De Sao Paulo

RESOURCES