Skip to main content
Thorax logoLink to Thorax
. 1989 Nov;44(11):903–912. doi: 10.1136/thx.44.11.903

Inspiratory and skeletal muscle strength and endurance and diaphragmatic activation in patients with chronic airflow limitation.

S Z Newell 1, D K McKenzie 1, S C Gandevia 1
PMCID: PMC462146  PMID: 2595630

Abstract

To determine whether patients with chronic airflow limitation have a specific alteration in skeletal muscle performance, the strength and endurance of inspiratory and limb muscles were compared in 11 patients with chronic airflow limitation and 11 control subjects during maximal voluntary contractions. Peak inspiratory pressure at observed functional residual capacity (FRC) was significantly less in the patients than in the control subjects (mean 72 (SD 25) v 93 (21) cm H2O), though only two patients had low maximal pressures across a wide volume range. Maximal voluntary torque of the elbow flexor muscles was also reduced in the patients but the difference was not significant (60 (17) v 72 (18) Nm). During the endurance sequence of 18 maximal voluntary contractions (10 s duration, 5 s rest interval) the decline in peak and average force was less for the inspiratory muscles than for the elbow flexors in both groups. Inspiratory muscle endurance was slightly greater in the patients with chronic airflow limitation than in the control subjects, whereas limb muscle endurance was slightly impaired in the patients. In three patients with chronic airflow limitation, two of whom had low maximal inspiratory pressures at FRC, the ability to drive the diaphragm voluntarily was examined by stimulating the phrenic nerves during maximal inspiratory efforts. Each patient was capable of full activation of the diaphragm during the maximal inspiratory efforts. These results suggest that the relative preservation of inspiratory muscle performance in patients with chronic airflow limitation may be an adaptive response to respiratory "loading."

Full text

PDF
903

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arora N. S., Rochester D. F. COPD and human diaphragm muscle dimensions. Chest. 1987 May;91(5):719–724. doi: 10.1378/chest.91.5.719. [DOI] [PubMed] [Google Scholar]
  2. Arora N. S., Rochester D. F. Effect of body weight and muscularity on human diaphragm muscle mass, thickness, and area. J Appl Physiol Respir Environ Exerc Physiol. 1982 Jan;52(1):64–70. doi: 10.1152/jappl.1982.52.1.64. [DOI] [PubMed] [Google Scholar]
  3. Bellemare F., Bigland-Ritchie B. Assessment of human diaphragm strength and activation using phrenic nerve stimulation. Respir Physiol. 1984 Dec;58(3):263–277. doi: 10.1016/0034-5687(84)90003-3. [DOI] [PubMed] [Google Scholar]
  4. Bellemare F., Grassino A. Force reserve of the diaphragm in patients with chronic obstructive pulmonary disease. J Appl Physiol Respir Environ Exerc Physiol. 1983 Jul;55(1 Pt 1):8–15. doi: 10.1152/jappl.1983.55.1.8. [DOI] [PubMed] [Google Scholar]
  5. Bellemare F., Woods J. J., Johansson R., Bigland-Ritchie B. Motor-unit discharge rates in maximal voluntary contractions of three human muscles. J Neurophysiol. 1983 Dec;50(6):1380–1392. doi: 10.1152/jn.1983.50.6.1380. [DOI] [PubMed] [Google Scholar]
  6. Byrd R. B., Hyatt R. E. Maximal respiratory pressures in chronic obstructive lung disease. Am Rev Respir Dis. 1968 Nov;98(5):848–856. doi: 10.1164/arrd.1968.98.5.848. [DOI] [PubMed] [Google Scholar]
  7. Decramer M., Demedts M., Rochette F., Billiet L. Maximal transrespiratory pressures in obstructive lung disease. Bull Eur Physiopathol Respir. 1980 Jul-Aug;16(4):479–490. [PubMed] [Google Scholar]
  8. Gandevia S. C., McKenzie D. K. Activation of human muscles at short muscle lengths during maximal static efforts. J Physiol. 1988 Dec;407:599–613. doi: 10.1113/jphysiol.1988.sp017434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gandevia S. C., McKenzie D. K. Activation of the human diaphragm during maximal static efforts. J Physiol. 1985 Oct;367:45–56. doi: 10.1113/jphysiol.1985.sp015813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gandevia S. C., McKenzie D. K. Human diaphragmatic endurance during different maximal respiratory efforts. J Physiol. 1988 Jan;395:625–638. doi: 10.1113/jphysiol.1988.sp016938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gandevia S. C., McKenzie D. K., Neering I. R. Endurance properties of respiratory and limb muscles. Respir Physiol. 1983 Jul;53(1):47–61. doi: 10.1016/0034-5687(83)90015-4. [DOI] [PubMed] [Google Scholar]
  12. Gibson G. J., Clark E., Pride N. B. Static transdiaphragmatic pressures in normal subjects and in patients with chronic hyperinflation. Am Rev Respir Dis. 1981 Dec;124(6):685–689. doi: 10.1164/arrd.1981.124.6.685. [DOI] [PubMed] [Google Scholar]
  13. Hales J. P., Gandevia S. C. Assessment of maximal voluntary contraction with twitch interpolation: an instrument to measure twitch responses. J Neurosci Methods. 1988 Sep;25(2):97–102. doi: 10.1016/0165-0270(88)90145-8. [DOI] [PubMed] [Google Scholar]
  14. Holloszy J. O., Booth F. W. Biochemical adaptations to endurance exercise in muscle. Annu Rev Physiol. 1976;38:273–291. doi: 10.1146/annurev.ph.38.030176.001421. [DOI] [PubMed] [Google Scholar]
  15. Jardim J., Farkas G., Prefaut C., Thomas D., Macklem P. T., Roussos C. The failing inspiratory muscles under normoxic and hypoxic conditions. Am Rev Respir Dis. 1981 Sep;124(3):274–279. doi: 10.1164/arrd.1981.124.3.274. [DOI] [PubMed] [Google Scholar]
  16. Lavietes M. H., Grocela J. A., Maniatis T., Potulski F., Ritter A. B., Sunderam G. Inspiratory muscle strength in asthma. Chest. 1988 May;93(5):1043–1048. doi: 10.1378/chest.93.5.1043. [DOI] [PubMed] [Google Scholar]
  17. Marazzini L., Vezzoli F., Rizzato G. Intrathoracic pressure development in chronic airways obstruction. J Appl Physiol. 1974 Oct;37(4):575–578. doi: 10.1152/jappl.1974.37.4.575. [DOI] [PubMed] [Google Scholar]
  18. McKenzie D. K., Gandevia S. C. Influence of muscle length on human inspiratory and limb muscle endurance. Respir Physiol. 1987 Feb;67(2):171–182. doi: 10.1016/0034-5687(87)90039-9. [DOI] [PubMed] [Google Scholar]
  19. McKenzie D. K., Gandevia S. C. Phrenic nerve conduction times and twitch pressures of the human diaphragm. J Appl Physiol (1985) 1985 May;58(5):1496–1504. doi: 10.1152/jappl.1985.58.5.1496. [DOI] [PubMed] [Google Scholar]
  20. McKenzie D. K., Gandevia S. C. Strength and endurance of inspiratory, expiratory, and limb muscles in asthma. Am Rev Respir Dis. 1986 Nov;134(5):999–1004. doi: 10.1164/arrd.1986.134.5.999. [DOI] [PubMed] [Google Scholar]
  21. Pardy R. L., Bye P. T. Diaphragmatic fatigue in normoxia and hyperoxia. J Appl Physiol (1985) 1985 Mar;58(3):738–742. doi: 10.1152/jappl.1985.58.3.738. [DOI] [PubMed] [Google Scholar]
  22. Rochester D. F., Braun N. M., Arora N. S. Respiratory muscle strength in chronic obstructive pulmonary disease. Am Rev Respir Dis. 1979 Feb;119(2 Pt 2):151–154. doi: 10.1164/arrd.1979.119.2P2.151. [DOI] [PubMed] [Google Scholar]
  23. Roussos C. S., Macklem P. T. Diaphragmatic fatigue in man. J Appl Physiol Respir Environ Exerc Physiol. 1977 Aug;43(2):189–197. doi: 10.1152/jappl.1977.43.2.189. [DOI] [PubMed] [Google Scholar]
  24. Roussos C., Macklem P. T. The respiratory muscles. N Engl J Med. 1982 Sep 23;307(13):786–797. doi: 10.1056/NEJM198209233071304. [DOI] [PubMed] [Google Scholar]
  25. Sanchez J., Derenne J. P., Debesse B., Riquet M., Monod H. Typology of the respiratory muscles in normal men and in patients with moderate chronic respiratory diseases. Bull Eur Physiopathol Respir. 1982 Nov-Dec;18(6):901–914. [PubMed] [Google Scholar]
  26. Sánchez J., Bastien C., Medrano G., Riquet M., Derenne J. P. Metabolic enzymatic activities in the diaphragm of normal men and patients with moderate chronic obstructive pulmonary disease. Bull Eur Physiopathol Respir. 1984 Nov-Dec;20(6):535–540. [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES