Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Apr 1;90(7):3009–3013. doi: 10.1073/pnas.90.7.3009

Evolution of the glutamine synthetase gene, one of the oldest existing and functioning genes.

Y Kumada 1, D R Benson 1, D Hillemann 1, T J Hosted 1, D A Rochefort 1, C J Thompson 1, W Wohlleben 1, Y Tateno 1
PMCID: PMC46226  PMID: 8096645

Abstract

We performed molecular phylogenetic analyses of glutamine synthetase (GS) genes in order to investigate their evolutionary history. The analyses were done on 30 DNA sequences of the GS gene which included both prokaryotes and eukaryotes. Two types of GS genes are known at present: the GSI gene found so far only in prokaryotes and the GSII gene found in both prokaryotes and eukaryotes. Our study has shown that the two types of GS gene were produced by a gene duplication which preceded, perhaps by > 1000 million years, the divergence of eukaryotes and prokaryotes. The results are consistent with the facts that (i) GS is a key enzyme of nitrogen metabolism found in all extant life forms and (ii) the oldest biological fossils date back 3800 million years. Thus, we suggest that GS genes are one of the oldest existing and functioning genes in the history of gene evolution and that GSI genes should also exist in eukaryotes. Furthermore, our study may stimulate investigation on the evolution of "preprokaryotes," by which we mean the organisms that existed during the era between the origin of life and the divergence of prokaryotes and eukaryotes.

Full text

PDF
3009

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Behrmann I., Hillemann D., Pühler A., Strauch E., Wohlleben W. Overexpression of a Streptomyces viridochromogenes gene (glnII) encoding a glutamine synthetase similar to those of eucaryotes confers resistance against the antibiotic phosphinothricyl-alanyl-alanine. J Bacteriol. 1990 Sep;172(9):5326–5334. doi: 10.1128/jb.172.9.5326-5334.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bozouklian H., Elmerich C. Nucleotide sequence of the Azospirillum brasilense Sp7 glutamine synthetase structural gene. Biochimie. 1986 Oct-Nov;68(10-11):1181–1187. doi: 10.1016/s0300-9084(86)80062-1. [DOI] [PubMed] [Google Scholar]
  3. Caizzi R., Bozzetti M. P., Caggese C., Ritossa F. Homologous nuclear genes encode cytoplasmic and mitochondrial glutamine synthetase in Drosophila melanogaster. J Mol Biol. 1990 Mar 5;212(1):17–26. doi: 10.1016/0022-2836(90)90301-2. [DOI] [PubMed] [Google Scholar]
  4. Colombo G., Villafranca J. J. Amino acid sequence of Escherichia coli glutamine synthetase deduced from the DNA nucleotide sequence. J Biol Chem. 1986 Aug 15;261(23):10587–10591. [PubMed] [Google Scholar]
  5. Colonna-Romano S., Riccio A., Guida M., Defez R., Lamberti A., Iaccarino M., Arnold W., Priefer U., Pühler A. Tight linkage of glnA and a putative regulatory gene in Rhizobium leguminosarum. Nucleic Acids Res. 1987 Mar 11;15(5):1951–1964. doi: 10.1093/nar/15.5.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Darrow R. A., Knotts R. R. Two forms of glutamine synthetase in free-living root-nodule bacteria. Biochem Biophys Res Commun. 1977 Sep 23;78(2):554–559. doi: 10.1016/0006-291x(77)90214-5. [DOI] [PubMed] [Google Scholar]
  7. Dickerson R. E. The structures of cytochrome c and the rates of molecular evolution. J Mol Evol. 1971;1(1):26–45. doi: 10.1007/BF01659392. [DOI] [PubMed] [Google Scholar]
  8. Eisenberg D., Almassy R. J., Janson C. A., Chapman M. S., Suh S. W., Cascio D., Smith W. W. Some evolutionary relationships of the primary biological catalysts glutamine synthetase and RuBisCO. Cold Spring Harb Symp Quant Biol. 1987;52:483–490. doi: 10.1101/sqb.1987.052.01.055. [DOI] [PubMed] [Google Scholar]
  9. Fuchs R. L., Keister D. L. Comparative properties of glutamine synthetases I and II in Rhizobium and Agrobacterium spp. J Bacteriol. 1980 Nov;144(2):641–648. doi: 10.1128/jb.144.2.641-648.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gebhardt C., Oliver J. E., Forde B. G., Saarelainen R., Miflin B. J. Primary structure and differential expression of glutamine synthetase genes in nodules, roots and leaves of Phaseolus vulgaris. EMBO J. 1986 Jul;5(7):1429–1435. doi: 10.1002/j.1460-2075.1986.tb04379.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gibbs C. S., Campbell K. E., Wilson R. H. Sequence of a human glutamine synthetase cDNA. Nucleic Acids Res. 1987 Aug 11;15(15):6293–6293. doi: 10.1093/nar/15.15.6293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hayward B. E., Hussain A., Wilson R. H., Lyons A., Woodcock V., McIntosh B., Harris T. J. The cloning and nucleotide sequence of cDNA for an amplified glutamine synthetase gene from the Chinese hamster. Nucleic Acids Res. 1986 Jan 24;14(2):999–1008. doi: 10.1093/nar/14.2.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hill R. T., Parker J. R., Goodman H. J., Jones D. T., Woods D. R. Molecular analysis of a novel glutamine synthetase of the anaerobe Bacteroides fragilis. J Gen Microbiol. 1989 Dec;135(12):3271–3279. doi: 10.1099/00221287-135-12-3271. [DOI] [PubMed] [Google Scholar]
  14. Janson C. A., Kayne P. S., Almassy R. J., Grunstein M., Eisenberg D. Sequence of glutamine synthetase from Salmonella typhimurium and implications for the protein structure. Gene. 1986;46(2-3):297–300. doi: 10.1016/0378-1119(86)90415-4. [DOI] [PubMed] [Google Scholar]
  15. Janssen P. J., Jones W. A., Jones D. T., Woods D. R. Molecular analysis and regulation of the glnA gene of the gram-positive anaerobe Clostridium acetobutylicum. J Bacteriol. 1988 Jan;170(1):400–408. doi: 10.1128/jb.170.1.400-408.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jin L., Nei M. Limitations of the evolutionary parsimony method of phylogenetic analysis. Mol Biol Evol. 1990 Jan;7(1):82–102. doi: 10.1093/oxfordjournals.molbev.a040588. [DOI] [PubMed] [Google Scholar]
  17. Kimura M. Evolutionary rate at the molecular level. Nature. 1968 Feb 17;217(5129):624–626. doi: 10.1038/217624a0. [DOI] [PubMed] [Google Scholar]
  18. Kimura M., Ohta T. Eukaryotes-prokaryotes divergence estimated by 5S ribosomal RNA sequences. Nat New Biol. 1973 Jun 13;243(128):199–200. doi: 10.1038/newbio243199a0. [DOI] [PubMed] [Google Scholar]
  19. Kumada Y., Takano E., Nagaoka K., Thompson C. J. Streptomyces hygroscopicus has two glutamine synthetase genes. J Bacteriol. 1990 Sep;172(9):5343–5351. doi: 10.1128/jb.172.9.5343-5351.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Moriyama E. N., Gojobori T. Rates of synonymous substitution and base composition of nuclear genes in Drosophila. Genetics. 1992 Apr;130(4):855–864. doi: 10.1093/genetics/130.4.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nei M., Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986 Sep;3(5):418–426. doi: 10.1093/oxfordjournals.molbev.a040410. [DOI] [PubMed] [Google Scholar]
  22. Nei M., Stephens J. C., Saitou N. Methods for computing the standard errors of branching points in an evolutionary tree and their application to molecular data from humans and apes. Mol Biol Evol. 1985 Jan;2(1):66–85. doi: 10.1093/oxfordjournals.molbev.a040333. [DOI] [PubMed] [Google Scholar]
  23. Pesole G., Bozzetti M. P., Lanave C., Preparata G., Saccone C. Glutamine synthetase gene evolution: a good molecular clock. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):522–526. doi: 10.1073/pnas.88.2.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Possot O., Sibold L., Aubert J. P. Nucleotide sequence and expression of the glutamine synthetase structural gene, glnA, of the archaebacterium Methanococcus voltae. Res Microbiol. 1989 Jul-Aug;140(6):355–371. doi: 10.1016/0923-2508(89)90012-0. [DOI] [PubMed] [Google Scholar]
  25. Pu H. F., Young A. P. The structure of the chicken glutamine synthetase-encoding gene. Gene. 1989 Sep 1;81(1):169–175. doi: 10.1016/0378-1119(89)90348-x. [DOI] [PubMed] [Google Scholar]
  26. Rawlings D. E., Jones W. A., O'Neill E. G., Woods D. R. Nucleotide sequence of the glutamine synthetase gene and its controlling region from the acidophilic autotroph Thiobacillus ferrooxidans. Gene. 1987;53(2-3):211–217. doi: 10.1016/0378-1119(87)90009-6. [DOI] [PubMed] [Google Scholar]
  27. Rochefort D. A., Benson D. R. Molecular cloning, sequencing, and expression of the glutamine synthetase II (glnII) gene from the actinomycete root nodule symbiont Frankia sp. strain CpI1. J Bacteriol. 1990 Sep;172(9):5335–5342. doi: 10.1128/jb.172.9.5335-5342.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  29. Sakamoto A., Ogawa M., Masumura T., Shibata D., Takeba G., Tanaka K., Fujii S. Three cDNA sequences coding for glutamine synthetase polypeptides in Oryza sativa L. Plant Mol Biol. 1989 Nov;13(5):611–614. doi: 10.1007/BF00027323. [DOI] [PubMed] [Google Scholar]
  30. Shatters R. G., Kahn M. L. Glutamine synthetase II in Rhizobium: reexamination of the proposed horizontal transfer of DNA from eukaryotes to prokaryotes. J Mol Evol. 1989 Nov;29(5):422–428. doi: 10.1007/BF02602912. [DOI] [PubMed] [Google Scholar]
  31. Strauch M. A., Aronson A. I., Brown S. W., Schreier H. J., Sonenhein A. L. Sequence of the Bacillus subtilis glutamine synthetase gene region. Gene. 1988 Nov 30;71(2):257–265. doi: 10.1016/0378-1119(88)90042-x. [DOI] [PubMed] [Google Scholar]
  32. Tateno Y., Nei M., Tajima F. Accuracy of estimated phylogenetic trees from molecular data. I. Distantly related species. J Mol Evol. 1982;18(6):387–404. doi: 10.1007/BF01840887. [DOI] [PubMed] [Google Scholar]
  33. Tingey S. V., Coruzzi G. M. Glutamine Synthetase of Nicotiana plumbaginifolia: Cloning and in Vivo Expression. Plant Physiol. 1987 Jun;84(2):366–373. doi: 10.1104/pp.84.2.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tingey S. V., Tsai F. Y., Edwards J. W., Walker E. L., Coruzzi G. M. Chloroplast and cytosolic glutamine synthetase are encoded by homologous nuclear genes which are differentially expressed in vivo. J Biol Chem. 1988 Jul 15;263(20):9651–9657. [PubMed] [Google Scholar]
  35. Tingey S. V., Walker E. L., Coruzzi G. M. Glutamine synthetase genes of pea encode distinct polypeptides which are differentially expressed in leaves, roots and nodules. EMBO J. 1987 Jan;6(1):1–9. doi: 10.1002/j.1460-2075.1987.tb04710.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Truffa-Bachi P., Cohen G. N. Amino acid metabolism. Annu Rev Biochem. 1973;42(0):113–134. doi: 10.1146/annurev.bi.42.070173.000553. [DOI] [PubMed] [Google Scholar]
  37. Tyler B. Regulation of the assimilation of nitrogen compounds. Annu Rev Biochem. 1978;47:1127–1162. doi: 10.1146/annurev.bi.47.070178.005403. [DOI] [PubMed] [Google Scholar]
  38. Wray L. V., Jr, Fisher S. H. Cloning and nucleotide sequence of the Streptomyces coelicolor gene encoding glutamine synthetase. Gene. 1988 Nov 30;71(2):247–256. doi: 10.1016/0378-1119(88)90041-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES