Abstract
Selected functions of alveolar macrophages obtained by bronchoalveolar lavage of 12 healthy smokers were examined before and after eight weeks' treatment with an inhaled glucocorticosteroid, budesonide (400 micrograms twice daily). After budesonide treatment spontaneous as well as opsonised zymosan triggered prostaglandin E2 (PGE2) secretion from harvested cells was reduced; no such reduction in opsonised zymosan triggered leukotriene B4 (LTB4) production was observed. Neither the capacity to phagocytose opsonised yeast particles nor the superoxide radical generation triggered by the calcium ionophore A23187, 4 beta-phorbol 12-myristate 13-acetate (PMA), or opsonised zymosan ex vivo were more than marginally affected by the glucocorticosteroid treatment in vivo. Lavage fluid concentrations of angiotensin converting enzyme (ACE), however, after treatment were twice those before treatment and concentrations of fibronectin were reduced to half. Albumin concentrations in lavage fluid were not affected by the glucocorticosteroid treatment. In separate experiments treatment of alveolar macrophages with 10(-7) or 10(-6) M budesonide overnight in vitro did not affect their superoxide radical or PGE2 generation but significantly blocked LTB4 release. These data indicate that inhaled gluco-corticosteroid treatment may affect synthesis or release (or both) of ACE and fibronectin by alveolar macrophages from healthy smokers whereas other functions of these cells, such as the generation of reactive oxygen derived products ex vivo, are only marginally affected.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bakhle Y. S., Reynard A. M., Vane J. R. Metabolism of the angiotensins in isolated perfused tissues. Nature. 1969 Jun 7;222(5197):956–959. doi: 10.1038/222956a0. [DOI] [PubMed] [Google Scholar]
- Bergstrand H., Björnson A., Eklund A., Hernbrand R., Larsson K., Linden M., Nilsson A. Stimuli-induced superoxide radical generation in vitro by human alveolar macrophages from smokers: modulation by N-acetylcysteine treatment in vivo. J Free Radic Biol Med. 1986;2(2):119–127. doi: 10.1016/s0748-5514(86)80060-5. [DOI] [PubMed] [Google Scholar]
- Bergstrand H., Björnsson A., Lundquist B., Nilsson A., Brattsand R. Inhibitory effect of glucocorticosteroids on anti-IgE-induced histamine release from human basophilic leukocytes: evidence for a dual mechanism of action. Allergy. 1984 Apr;39(3):217–230. doi: 10.1111/j.1398-9995.1984.tb02627.x. [DOI] [PubMed] [Google Scholar]
- Calhoun W. J., Salisbury S. M., Chosy L. W., Busse W. W. Increased alveolar macrophage chemiluminescence and airspace cell superoxide production in active pulmonary sarcoidosis. J Lab Clin Med. 1988 Aug;112(2):147–156. [PubMed] [Google Scholar]
- Clement A., Chadelat K., Masliah J., Housset B., Sardet A., Grimfeld A., Tournier G. A controlled study of oxygen metabolite release by alveolar macrophages from children with interstitial lung disease. Am Rev Respir Dis. 1987 Dec;136(6):1424–1428. doi: 10.1164/ajrccm/136.6.1424. [DOI] [PubMed] [Google Scholar]
- Di Rosa M., Calignano A., Carnuccio R., Ialenti A., Sautebin L. Multiple control of inflammation by glucocorticoids. Agents Actions. 1986 Jan;17(3-4):284–289. doi: 10.1007/BF01982621. [DOI] [PubMed] [Google Scholar]
- Eklund A., Blaschke E., Danielsson B. Subcellular localization of angiotensin-converting enzyme in the human alveolar macrophage. Scand J Clin Lab Invest. 1987 Feb;47(1):47–54. doi: 10.1080/00365518709168160. [DOI] [PubMed] [Google Scholar]
- Eklund A., Blaschke E. Relationship between changed alveolar-capillary permeability and angiotensin converting enzyme activity in serum in sarcoidosis. Thorax. 1986 Aug;41(8):629–634. doi: 10.1136/thx.41.8.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eklund A., Hällgren R., Blaschke E., Engström-Laurent A., Persson U., Svane B. Hyaluronate in bronchoalveolar lavage fluid in sarcoidosis and its relationship to alveolar cell populations. Eur J Respir Dis. 1987 Jul;71(1):30–36. [PubMed] [Google Scholar]
- Fels A. O., Cohn Z. A. The alveolar macrophage. J Appl Physiol (1985) 1986 Feb;60(2):353–369. doi: 10.1152/jappl.1986.60.2.353. [DOI] [PubMed] [Google Scholar]
- Friedland J., Setton C., Silverstein E. Angiotensin converting enzyme: induction by steroids in rabbit alveolar macrophages in culture. Science. 1977 Jul 1;197(4298):64–65. doi: 10.1126/science.194311. [DOI] [PubMed] [Google Scholar]
- Grasso R. J., Klein T. W., Benjamin W. R. Inhibition of yeast phagocytosis and cell spreading by glucocorticoids in cultures of resident murine peritoneal macrophages. J Immunopharmacol. 1981;3(2):171–192. doi: 10.3109/08923978109026425. [DOI] [PubMed] [Google Scholar]
- Grasso R. J., West L. A., Guay R. C., Jr, Klein T. W. Modulatory effects of heat-labile serum components on the inhibition of phagocytosis by dexamethasone in peritoneal macrophage cultures. Int J Immunopharmacol. 1983;5(4):267–276. doi: 10.1016/0192-0561(83)90028-0. [DOI] [PubMed] [Google Scholar]
- Hedenström H., Malmberg P., Agarwal K. Reference values for lung function tests in females. Regression equations with smoking variables. Bull Eur Physiopathol Respir. 1985 Nov-Dec;21(6):551–557. [PubMed] [Google Scholar]
- Hedenström H., Malmberg P., Fridriksson H. V. Reference values for lung function tests in men: regression equations with smoking variables. Ups J Med Sci. 1986;91(3):299–310. doi: 10.3109/03009738609178670. [DOI] [PubMed] [Google Scholar]
- Hinman L. M., Stevens C., Matthay R. A., Bernard J., Gee L. Angiotensin convertase activities in human alveolar macrophages: effects of cigarette smoking and sarcoidosis. Science. 1979 Jul 13;205(4402):202–203. doi: 10.1126/science.221980. [DOI] [PubMed] [Google Scholar]
- Hoidal J. R., Fox R. B., LeMarbe P. A., Perri R., Repine J. E. Altered oxidative metabolic responses in vitro of alveolar macrophages from asymptomatic cigarette smokers. Am Rev Respir Dis. 1981 Jan;123(1):85–89. doi: 10.1164/arrd.1981.123.1.85. [DOI] [PubMed] [Google Scholar]
- Holt P. G. Immune and inflammatory function in cigarette smokers. Thorax. 1987 Apr;42(4):241–249. doi: 10.1136/thx.42.4.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johansson S. A., Andersson K. E., Brattsand R., Gruvstad E., Hedner P. Topical and systemic glucocorticoid potencies of budesonide and beclomethasone dipropionate in man. Eur J Clin Pharmacol. 1982;22(6):523–529. doi: 10.1007/BF00609625. [DOI] [PubMed] [Google Scholar]
- Joseph M., Tonnel A. B., Capron A., Voisin C. Enzyme release and superoxide anion production by human alveolar macrophages stimulated with immunoglobulin E. Clin Exp Immunol. 1980 May;40(2):416–422. [PMC free article] [PubMed] [Google Scholar]
- Kemmerich B., Rossing T. H., Pennington J. E. Comparative oxidative microbicidal activity of human blood monocytes and alveolar macrophages and activation by recombinant gamma interferon. Am Rev Respir Dis. 1987 Aug;136(2):266–270. doi: 10.1164/ajrccm/136.2.266. [DOI] [PubMed] [Google Scholar]
- Laurell C. B. Electroimmuno assay. Scand J Clin Lab Invest Suppl. 1972;124:21–37. doi: 10.3109/00365517209102748. [DOI] [PubMed] [Google Scholar]
- Laviolette M., Chang J., Newcombe D. S. Human alveolar macrophages: a lesion in arachidonic acid metabolism in cigarette smokers. Am Rev Respir Dis. 1981 Oct;124(4):397–401. doi: 10.1164/arrd.1981.124.4.397. [DOI] [PubMed] [Google Scholar]
- Laviolette M., Coulombe R., Picard S., Braquet P., Borgeat P. Decreased leukotriene B4 synthesis in smokers' alveolar macrophages in vitro. J Clin Invest. 1986 Jan;77(1):54–60. doi: 10.1172/JCI112301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lieberman J. Elevation of serum angiotensin-converting-enzyme (ACE) level in sarcoidosis. Am J Med. 1975 Sep;59(3):365–372. doi: 10.1016/0002-9343(75)90395-2. [DOI] [PubMed] [Google Scholar]
- Linden M., Wieslander E., Eklund A., Larsson K., Brattsand R. Effects of oral N-acetylcysteine on cell content and macrophage function in bronchoalveolar lavage from healthy smokers. Eur Respir J. 1988 Jul;1(7):645–650. [PubMed] [Google Scholar]
- Mendelsohn F. A., Lloyd C. J., Kachel C., Funder J. W. Induction by glucocorticoids of angiotensin converting enzyme production from bovine endothelial cells in culture and rat lung in vivo. J Clin Invest. 1982 Sep;70(3):684–692. doi: 10.1172/JCI110663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakagawara A., DeSantis N. M., Nogueira N., Nathan C. F. Lymphokines enhance the capacity of human monocytes to secret reactive oxygen intermediates. J Clin Invest. 1982 Nov;70(5):1042–1048. doi: 10.1172/JCI110691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nathan C. F., Murray H. W., Wiebe M. E., Rubin B. Y. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983 Sep 1;158(3):670–689. doi: 10.1084/jem.158.3.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nathan C. F. Secretory products of macrophages. J Clin Invest. 1987 Feb;79(2):319–326. doi: 10.1172/JCI112815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perez T., Farre J. M., Gosset P., Wallaert B., Duquesnoy B., Voisin C., Delcambre B., Tonnel A. B. Subclinical alveolar inflammation in rheumatoid arthritis: superoxide anion, neutrophil chemotactic activity and fibronectin generation by alveolar macrophages. Eur Respir J. 1989 Jan;2(1):7–13. [PubMed] [Google Scholar]
- Pick E., Mizel D. Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. J Immunol Methods. 1981;46(2):211–226. doi: 10.1016/0022-1759(81)90138-1. [DOI] [PubMed] [Google Scholar]
- Redinbaugh M. G., Turley R. B. Adaptation of the bicinchoninic acid protein assay for use with microtiter plates and sucrose gradient fractions. Anal Biochem. 1986 Mar;153(2):267–271. doi: 10.1016/0003-2697(86)90091-6. [DOI] [PubMed] [Google Scholar]
- Rennard S. I., Hunninghake G. W., Bitterman P. B., Crystal R. G. Production of fibronectin by the human alveolar macrophage: mechanism for the recruitment of fibroblasts to sites of tissue injury in interstitial lung diseases. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7147–7151. doi: 10.1073/pnas.78.11.7147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reynolds H. Y. Bronchoalveolar lavage. Am Rev Respir Dis. 1987 Jan;135(1):250–263. doi: 10.1164/arrd.1987.135.1.250. [DOI] [PubMed] [Google Scholar]
- Richards G. A., Theron A. J., Van der Merwe C. A., Anderson R. Spirometric abnormalities in young smokers correlate with increased chemiluminescence responses of activated blood phagocytes. Am Rev Respir Dis. 1989 Jan;139(1):181–187. doi: 10.1164/ajrccm/139.1.181. [DOI] [PubMed] [Google Scholar]
- Richter A. M., Abboud R. T., Johal S. S., Fera T. A. Acute effect of smoking on superoxide production by pulmonary alveolar macrophages. Lung. 1986;164(4):233–242. doi: 10.1007/BF02713647. [DOI] [PubMed] [Google Scholar]
- Rossi G. A., Bitterman P. B., Rennard S. I., Ferrans V. J., Crystal R. G. Evidence for chronic inflammation as a component of the interstitial lung disease associated with progressive systemic sclerosis. Am Rev Respir Dis. 1985 Apr;131(4):612–617. doi: 10.1164/arrd.1985.131.4.612. [DOI] [PubMed] [Google Scholar]
- Schaffner A., Rellstab P. Gamma-interferon restores listericidal activity and concurrently enhances release of reactive oxygen metabolites in dexamethasone-treated human monocytes. J Clin Invest. 1988 Sep;82(3):913–919. doi: 10.1172/JCI113698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takada Y., Hiwada K., Akutsu H., Hashimoto A., Kokubu T. The immunocytochemical detection of angiotensin-converting enzyme in alveolar macrophages from patients with sarcoidosis. Lung. 1984;162(6):317–323. doi: 10.1007/BF02715664. [DOI] [PubMed] [Google Scholar]
- Wallaert B., Aerts C., Bart F., Hatron P. Y., Dracon M., Tonnel A. B., Voisin C. Alveolar macrophage dysfunction in systemic lupus erythematosus. Am Rev Respir Dis. 1987 Aug;136(2):293–297. doi: 10.1164/ajrccm/136.2.293. [DOI] [PubMed] [Google Scholar]
- Wieslander E., Linden M., Håkansson L., Eklund A., Blaschke E., Brattsand R., Venge P. Human alveolar macrophages from smokers have an impaired capacity to secrete LTB4 but not other chemotactic factors. Eur J Respir Dis. 1987 Oct;71(4):263–272. [PubMed] [Google Scholar]
