Skip to main content
Indian Journal of Microbiology logoLink to Indian Journal of Microbiology
. 2015 Sep 7;55(4):375–383. doi: 10.1007/s12088-015-0553-5

Genome Wide Analysis for Rapid Identification of Vibrio Species

Vipin Chandra Kalia 1,2,, Prasun Kumar 1, Ravi Kumar 1, Anjali Mishra 1, Shikha Koul 1,2
PMCID: PMC4627950  PMID: 26543262

Abstract

The highly conserved 16S rRNA (rrs) gene is generally used for bacterial identification. In organisms possessing multiple copies of rrs, high intra-genomic heterogeneity does not allow easy distinction among different species. In order to identify Vibrio species, a wide range of genes have been employed. There is an urgent requirement of a consensus gene, which can be used as biomarker for rapid identification. Eight sequenced genomes of Vibrio species were screened for selecting genes which were common among all the genomes. Out of 108 common genes, 24 genes of sizes varying from 0.11 to 3.94 kb were subjected to in silico digestion with 10 type II restriction endonucleases (RE). A few unique genes—dapF, fadA, hisD, ilvH, lpxC, recF, recR, rph and ruvB in combination with certain REs provided unique digestion patterns, which can be used as biomarkers. This protocol can be exploited for rapid diagnosis of Vibrio species.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0553-5) contains supplementary material, which is available to authorized users.

Keywords: Biomarkers, Diagnosis, Genome, In silico, Restriction endonuclease, Vibrio

Introduction

The genus Vibrio consists of 103 species [1]. Of these, only ten species have been implicated to cause gastrointestinal and extra-intestinal diseases in human beings. Vibrio species are generally inhabited in marine niches. In humans, Vibrio species has been isolated from stool, vomitus, blood, or wound infections and also from environmental niches such as seawater, sediments, plankton, shellfish (oysters, clams and crabs) [2, 3]. Vibrio species which have great medical implications include: V. alginolyticus, V. carchariae, V. cholerae, V. cincinnatiensis, V. fluvialis, V. furnissii, V. metschnikovii, V. mimicus, V. parahaemolyticus, and V. vulnificus [4]. V. parahaemolyticus spreads into humans through contaminated sea food leading to acute gastroenteritis with diarrhea [2]. V. cholerae and V. vulnificus are responsible for other serious life-threatening infections in humans [2, 5].

Identification of Vibrios

Vibrio cultures are identified by colonial appearance, Gram stain, serology, and biochemical tests: Oxidase test, Voges–Proskauer test, sensitivity to pteridine O129, serology (agglutination with specific antisera), etc. [6, 7]. For species level identification, Matrix Assisted Laser Desorption/Ionisation—Time of Flight Mass Spectrometry is being employed [8]. This approach is effective in distinguishing very closely related species: Photobacterium damselae and Grimontia hollisae isolates from Vibrio species [8]. The highly conserved gene such as rrs (16S rRNA) is most widely used for detecting bacteria. Although, quite effective and precise, it does have some limitations. Species specific genes allow distinction between pathogenic and non-pathogenic strains. Amplification and sequencing of dnaJ gene has been instrumental in identifying Vibrio species—V. alginolyticus, V. cholerae, V. mimicus, V. parahaemolyticus, and V. vulnificus whereas toxR amplified using real-time quantitative PCR was found to be useful for detecting V. vulnificus in patients with skin and soft tissue infections [9, 10]. For distinguishing Vibrio from Aeromonas species in patients showing cholera-like symptoms, a duplex- PCR directed at genes—rrs and gcat (encoding cholesterol acyltransferase) has been used [11]. notI and sfiI genes have also proved helpful in distinguishing different species of Vibrio [12, 13]. Multiplex PCR sequencing of rpoB along with hsp60, and sodB and flaE genes was employed to distinguish four species of Vibrio: V. cholerae, V. mimicus, V. parahaemolyticus, and V. vulnificus [14]. pPCR assay to simultaneously detect virulent and non-virulent strains of V. vulnificus and V. parahaemolyticus was based on viuB, tdh, trh, vvhA and tlh genes as biomarkers [15].

Loop-mediated isothermal amplification (LAMP) protocol designed for amplification of ompW gene encoding outer membrane protein was targeted to detect V. cholerae, where ascytolysin/hemolysin gene (vvhA), could rapidly identify V. vulnificus with tenfold higher sensitivity than conventional PCR method [16, 17]. Innovative combination of LAMP method and Lateral Flow Dipstick to target vhhP2 and rpoX genes allowed rapid and sensitive detection of V. alginolyticus and V. harveyi [18, 19]. LAMP based detection was targeted on rpoS and vcgC genes of V. vulnificus on α subunit gene of RNA polymerase of Vibrio corallilyticus and thermolabile hemolysin gene (tlh) of V. parahaemolyticus [2023].

A few other methods which are employed for typing clinical isolates are: (i) Multi-locus sequence typing, (ii) Multiple-locus variable number tandem repeat analysis, and (iii) Whole genome sequencing [2426]. In spite of their high accuracy, discriminatory power, and reproducibility, these are limited to reference laboratories only and are not easy to implement for routine assays. The methods are costly, time-consuming and require special equipments [27]. Whole Genome Sequencing is relatively more promising as a rapid, accurate, and comprehensive technique with much wider implications and utility [28]. Rapid and accurate identification of pathogenic bacteria has always been a challenge. Molecular tools have proven helpful in meeting this challenge. A range of novel genomic tools, developed recently have enabled elucidation of the latent features of the highly conserved gene—rrs [2934]. However, this gene could not prove effective in identifying organisms, which possess multiple copies of rrs e.g., in Clostridium and Yersinia [35, 36]. Identification of Vibrio has been quite a tough task. Different researchers have used a variety of genes including rrs, as biomarkers for distinguishing Vibrio species. However, rrs alone has not proved very effective in identifying Vibrio species. The need is to identify a consensus gene, with unique features to be used as biomarker for rapid diagnosis. Here, we segregated the genes which were common to all species within a genus and digested them in silico with various type II restriction endonucleases (RE). Species within each genus could be segregated by different sets of gene-RE combinations.

Materials and Methods

Sequence Data and Comparative Genome Analysis

Completely sequenced genomes of the eight species of Vibrio were retrieved (http://www.ncbi.nlm.nih.gov/): V. anguillarum, V. cholerae, V. fischeri, V. nigripulchritudo, V. parahaemolyticus, V. tasmaniensis, V. tubiashii, and V. vulnificus (Table S1). Characteristics of Vibrio genomes have been presented in Table S1. Genes which were common to all the Vibrio genomes were elucidated by Pair-wise comparisons (Table S2). Among the 8 genomes, 108 protein encoding common genes could be segregated. Of these 108, we selected 24 to represent the whole range of gene sizes, in the range of 113 nucleotides (nts) to 3494 nts (Tables S2 and S3). The highly conserved non-protein coding gene, rrs was taken as reference, because it is used widely for identifying bacteria.

Restriction Endonuclease Analysis of Common Genes

All the selected genes were subjected to digestion with ten Type II REs: (i) four base cutters AluI (AG’CT), BfaI (C’TA_G), BfuCI (_GATC’), CviAII (C_AT’G), HpyCH4V (TG’CA), RsaI (GT’AC), TaqI (T_CG’A), Tru9I (T_TA’A), and (ii) 6 base cutters HaeI (WGG’CCW), Hin1I (GR_CG’YC) [36]. RE digestion patterns of all the 24 genes sequences along with rrs (Table S3) were analysed through Cleaver (http://cleaver.sourceforge.net/). Data matrices of REs generating 5–15 fragments were considered for consensus RE patterns [35, 36]. Vibrio species were then identified on the basis of unique gene-RE combinations.

Results

The completely sequenced genomes of Vibrio spp.: V. anguillarum, V. cholerae, V. fischeri, V. nigripulchritudo, V. parahaemolyticus, V. tasmaniensis, V. tubiashii, and V. vulnificus (Table S1) were found to vary from 4.03 to 6.32 Mb. Each genome is composed of 3656 to 5807 genes with an overall GC content in the range of 43.87–47.49 mol% (Table S1).

In Silico rrs Gene Analysis of Vibrio Species

The frequency of occurrence of the rrs gene per genome of Vibrio strains varied from 7 to 11. Within each genome, the rrs copies showed high similarity. Multiple sequence alignments of 69 copies of rrs from eight Vibrio genomes allowed us to conclude that these can be represented by ten groups containing 1–11 copies i.e., 67 copies are highly similar among themselves. RE digestion of rrs sequences showed that only a few in each species can be designated as unique: V. anguillarum (3/7 copies), V. cholerae (1/8 copies), V. fischeri (3/11 copies), V. nigripulchritudo (4/8 copies), V. parahaemolyticus (1/10 copies), V. tasmaniensis (2/7 copies), V. tubiashii (2/10 copies), and V. vulnificus (1/8 copies) (Table S4). It may be stated that rrs is not a good candidate gene for distinguishing Vibrio species unless all its copies are sequenced. It implies that we may need to resort to other gene sequences for deriving meaningful conclusions.

In Silico RE Digestion Patterns of Common Genes

In view of the fact that unique RE digestion patterns in rrs could not be deduced from any of the Vibrio genomes, genes which were common among them were analyzed. Genome wide comparison leads to the identification of 108 common genes in these 8 Vibrio genomes. Out of these 108 genes, we selected 24 genes, which varied in size from 113 to 3494 nts, in such a manner that genes of all sizes were represented (Tables S2 and S3).

In silico RE digestion patterns of 24 common genes with 10 different REs revealed some very interesting features in them. Of these 24 genes, 9 could be used for distinguishing most of the genomes—dapF, fadA, hisD, ilvH, lpxC, recF, recR, rph and ruvB (Tables S5–S13). The information on RE digestion patterns of the rest 15 genes has been presented as supplementary material (Tables S14–S28). However, due to the generation of a large number (ranging from 10 to 40) of small sized fragments, it became difficult to deduce meaningful conclusions. Hence, these were not considered significant enough for further evaluation.

A comparative analysis of all the nine genes and their RE digestion patterns revealed that fadA, hisD, and recF are the potential candidate genes, which can be used as biomarkers. These three genes had unique RE digestion patterns with REs: AluI, BfuCI, CviAII, HpyCH4V, RsaI, TaqI and Tru9I. HaeI, Hin1I and BfaI did not prove very effective, as they scarcely cleave these nine genes.

  • (i)

    hisD, recF and fadA genes

In silico digestion of hisD gene with REs—AluI, HpyCH4V, RsaI, and TaqI resulted in generation of unique digestion patterns with all the eight Vibrio genomes, where as BfuCI and Tru9I were successful in providing information which allowed identification of seven species of Vibrio. On the other hand, digestion of recF gene with REs—AluI, CviAII and Tru9I resulted in unique digestion patterns with all the eight Vibrio genomes, where as BfuCI, HpyCH4V and TaqI were helpful in distinguishing seven species of Vibrio. It is interesting to note that these two genes showed contrasting behavior with different REs. The RE digestion patterns of fadA gene with REs—BfuCI, CviAII, HpyCH4V, and Tru9I were unique and thus could be used as distinct biomarkers, where as with REs—AluI, RsaI and TaqI were effective in distinguishing 5–6 species of Vibrio. The three Vibrio genomes, which showed resistance to digestion with certain REs: V. cholerae (AE003852) to AluI, Tru9I and TaqI, V. tasmaniensis (FM954972) to TaqI and Tru9I, and V. vulnificus (BA000037) to BfuCI and RsaI (Tables 1, 2, 3).

  • (ii)

    dapF, ilvH, lpxC, recR, rph and ruvB genes

Table 1.

Unique in silico restriction endonuclease digestion pattern (5′–3′) of hisD gene of Vibrio genomes

Vibrio genome Restriction endonucleases
AluI BfuCI Tru9I
AE003852 34·479·342·275·43·123 165·194·394·72·83·388
BA000031 769·233·276·18 107·625·93·471 209·102·449·213·323
BA000037 513·392·387·4 173·56·82·617·45·306·17
CP000020 262·225·396·9·386·42 222·383·127·21·72·495 110·41·103·602·318·15·106·25
FM954972 70·198·30·348·129·95·316·116·18 212·399·148·173·388 31·118·168·51·812·105·35
CP002284 139·123·38·213·256·86·8·139·61·78·87·71 308·445·72·83·391 142·9·211·56·555·326
FO203526 250·42·221·351·10·299·105·21 222·510·21·546 362·56·771·110
CP009354 150·363·342·147·171·112·8 107·58·317·12·331·468 25·148·684·50·386
HpyCH4V RsaI TaqI
AE003852 691·155·135·186·24·105 416·119·44·504·213 46·478·419·73·250·30
BA000031 46·48·342·51·78·153·156·107·82·104·88·41 123·379·77·540·177 409·492·337·58
BA000037 94·141·162·333·93·473 845·266·8·47·130 146·38·5·20·108·584·95·300
CP000020 445·246·57·171·156·92·153 502·609·209 189·7·459·611·54
FM954972 85·33·606·123·222·251 125·312·735·148 215·315·401·24·335·30
CP002284 303·133·9·117·111·168·5·37·98·186·76·38·18 379·156·548·36·180 949·317·5·28
FO203526 397·39·9·117·186·75·60·141·51·153·53·18 50·69·964·83·133 524·75·417·283
CP009354 397·48·120·276·33·150·269 379·200·401·139·47·127 184·225·534·6·67·14·241·22

Symbol (·) indicates RE site in the gene sequences (–): no digestion

Additional unique patterns: (i) BfaI—1021·117·66·116 (FM954972); (ii) Hin1I—304·501·93·398 (BA000037) and (iii) CviAII—324·766·68·138 (AE003852), 224·68·281·747 (FM954972) and 218·22·978·75 (CP009354)

Table 2.

Unique in silico restriction endonuclease digestion pattern (5′–3′) of recF gene of Vibrio genomes

Vibrio genome Restriction endonucleases
AluI BfuCI HpyCH4V
AE003852 161·78·16·269·568 20·156·67·303·147·42·357 210·147·106·39·403·187
BA000031 161·82·269·10·241·65·164·88 231·303·83·30·76·357 345·58·48·442·59·128
BA000037 243·81·188·10·558 195·36·17·475·287·70 58·270·17·106·149·480
CP000020 161·40·127·184·142·78·348 439·12·39·294·57·52·122·8·57
FM954972 201·42·85·199·70·135·260·88 231·492·42·240·75 194·151·106·442·122·8·57
CP002284 201·42·579·54·204 231·138·165·189·357 210·135·58·168·80·190·52·122·65
FO203526 161·82·81·4·194·5·295·258 231·303·189·357
CP009354 161·40·42·72·9·184·4·10·561 125·106·303·83·106·360 623·218·75·167
CviAII TaqI Tru9I
AE003852 142·69·253·568·60 422·36·198·6·16·31·19·189·175 16·25·33·81·114·30·177·191·121·304
BA000031 142·69·241·424·144·28·9·23 277·133·306·309·55 41·33·183·30·177·312·47·257
BA000037 142·69·241·568·60 368·31·595·73·13 74·81·102·30·89·88·365·217·34
CP000020 142·69·241·572·33·23 174·9·216·595·52·34 16·7·51·81·11·121·185·24·273·7·48·44·33
FM954972 142·69·241·572·24·9·23 16·7·51·81·102·30·312·57·305·119
CP002284 142·69·361·448·28·9·23 566·138·12·251·113 16·25·33·92·91·30·177·32·273·55·5·39·33
FO203526 142·69·241·379·217·32 56·340·14·256·38·12·309·55 74·183·30·177·305·192·119
CP009354 142·69·837·9·26 410·106·128·153·286 56·18·81·102·30·177·9·303·47·78·60·122

Symbol (·) indicates RE site in the gene sequences (–): no digestion

Additional unique patterns: BfaI—110·8·585·374·3 (BA000031)

Table 3.

Unique in silico restriction endonuclease digestion pattern (5′–3′) of fadA gene of Vibrio genomes

Vibrio genome Restriction endonucleases
BfuCI CviAII HpyCH4V
AE003852 84·190·58·294·52·147·242·97 282·13·20·45·112·45·12·54·254·57·219·51 174·111·9·34·143·61·171·173·21·267
BA000031 353·405·66·13·339 307·20·45·45·30·37·45·233·57·30·113·163·51 91·95·40·71·9·16·423·126·24·9·42·114·116
BA000037 84·248·9·271·66·68·66·13·188·151 315·90·30·94·54·33·134·57·30·66·210·51 285·9·34·143·61·402·184·23·23
CP000020 201·428·115·147·220·119 66·282·13·65·7·15·234·548 271·80·9·7·37·133·214·423·33·23
FM954972 84·257·484·339 295·20·67·23·112·233·87·66·47·214 94·191·9·7·170·28·90·150·144·258·23
CP002284 158·480·120·79·135·53·151 307·87·23·178·167·144·270 106·191·9·177·412·14·37·184·46
FO203526 14·70·190·551·242·100 282·33·45·112·111·158·96·113·163·54 79·15·191·9·7·204·429·21·63·149
CP009354 96·479·49·134·79·135·204 307·20·45·7·15·23·67·45·224·9·87·327 226·12·59·9·177·214·48·150·281
AluI RsaI TaqI Tru9I
AE003852 33·821·193·117 197·357·227·19·89·275
BA000031 45·270·68·226·96·161·310 32·333·56·268·237·250 209·248·109·610
BA000037 468·306·144·246 20·55·205·129·140·343·272 134·63·248·355·75·126·69·91·3
CP000020 355·162·222·236·255 239·198·322·471 96·104·349·147·47·112·125·250 61·265·185·156·273·82·44·66·95·3
FM954972 61·156·72·246·45·83·55·200·246 33·140·198·337·146·310 209·63·185·336·138·76·75·94
CP002284 238·201·153·357·227 185·198·226·96·471 161·462·363·190 782·107·112·163
FO203526 451·212·103·152·19·230 30·323·294·245·165·103·7 134·311·430·126·74·92
CP009354 73·602·255·190·56 45·140·130·294·111·146·310 421·487·161·107 146·63·248·109·447·69·91·3

Symbol (·) indicates RE site in the gene sequences (–): no digestion

Additional unique patterns: (i) BfaI—50·476·285·419 (CP000020), 184·780·69·131 (FM954972), (ii) Hin1I—350·660·81·76 (FO203526)

The digestion of these genes allowed segregation of 5–8 genomes of Vibrio. The genomes which could not be digested with most of the REs were: V. anguillarum (CP002284) and V. fischeri (CP000020) (Tables 4, 5, 6, 7, 8, 9).

  • (iii)

    The rest of the genes (15)

Table 4.

Unique in silico restriction endonuclease digestion pattern (5′–3′) of ruvB gene of Vibrio genomes

Vibrio genome Restriction endonucleases
BfuCI CviAII RsaI
AE003852 12·51·45·12·51·285·513·36 112·305·378·210 258·122·315·250·60
BA000031 12·96·12·227·220·402·36 112·305·378·27·183 258·295·107·345
BA000037 12·96·12·402·45·305·97·36 393·222·147·33·27·39·144 116·544·35·310
CP000020 12·159·328·23·45·465·45 112·305·198·99·81·282
FM954972 12·51·45·63·176·105·565 417·345·33·66·156 258·127·168·107·357
CP002284 12·51·45·414·45·402·36 116·423·38·428
FO203526 2·118·51·627·153 112·305·345·33·156
CP009354 12·51·45·12·11·40·120·231·447·36 112·305·444·144 258·17·105·173·452
HpyCH4V TaqI Tru9I
AE003852 439·57·44·45·10·57·332·21 66·344·45·158·241·151
BA000031 484·80·31·111·270·29 278·93·242·32·128·15·66·151
BA000037 232·207·45·89·12·151·269 170·285·312·11·173·54
CP000020 25·123·153·135·48·111·36·21·213·74·138 19·121·218·117·30·253·319
FM954972 170·285·193·125·15·169·38·22
CP002284 585·46·114·126·134 170·240·45·158·83·92·66·151 19·25·96·218·91·56·500
FO203526 391·93·12·89·149·134·71·12 5·84·81·171·30·402·178 140·335·88·41·347
CP009354 573·133·165·68·66 15·47·27·81·147·138·318·15·217

Symbol (·) indicates RE site in the gene sequences (–): no digestion

Additional unique patterns: (i) AluI—87·349·371·64·134 (AE003852), 10·77·58·87·66·779 (CP000020), 10·398·399·58·140 (CP002284), and 41·46·66·79·176·28·371·58·86 (FO203526), (ii) BfaI—644·170·48·143 (CP002284)

Table 5.

Unique in silico restriction endonuclease digestion pattern (5′–3′) of lpxC gene of Vibrio genomes

Vibrio genome Restriction endonucleases
RsaI HpyCH4V AluI
AE003852 15·108·66·26·192·163·348 292·53·28·230·315
BA000031 15·108·66·381·28·320 97·96·54·6·113·199·162·165·26 154·9·189·566
BA000037 15·174·254·127·348 91·6·276·120·72·353 94·538·209·77
CP000020 15·17·91·66·26·355·28·52·258·10 322·30·291·135·42·9·57·8·24 94·471·67·178·108
FM954972 15·108·66·26·355·80·174·94 97·195·81·462·83 94·60·93·385·209·77
CP002284 123·66·254·127·28·144·176 565·67·178·108
FO203526 189·381·28·144·176 603·108·109·98 91·261·213·67·209·77
CP009354 15·108·47·19·26·228·127·28·226·94 97·195·81·192·78·186·57·6·26
CviAII TaqI Tru9I
AE003852 180·564·10·88·61·15 266·15·189·123·99·168·58 200·39·210·469
BA000031 744·98·61·15 266·93·111·123·42·225·58 395·54·33·317·119
BA000037 462·282·10·39·125 266·210·21·27·69·99·226 76·319·54·33·189·128·119
CP000020 131·69·168·27·87·436
FM954972 266·21·103·80·6·216·168·58 200·39·210·222·247
CP002284 180·78·258·66·162·49·125 266·15·109·18·89·421 76·162·157·404·116·3
FO203526 180·78·190·14·120·162·49·125 266·93·111·12·42·336·58
CP009354 309·153·120·162·49·49·61·15 266·93·31·80·165·225·58 200·38·157·153·123·247

Symbol (·) indicates RE site in the gene sequences (–): no digestion

Additional unique patterns: (i) BfaI—250·402·69·189·8 (FM954972) and 250·73·299·296 (CP009354), (ii) BfuCI—2·154·48·59·381·91·96·87 (AE003852), 2·124·30·572·103·87 (BA000037) and 2·154·143·619 (FM954972)

Table 6.

Unique in silico restriction endonuclease digestion pattern (5′–3′) of dapF gene of Vibrio genomes

Vibrio genome Restriction endonucleases
HpyCH4V CviAII BfuCI Tru9I
AE003852 3·21·564·108·135 261·31·65·124·350 92·16·24·30·177·5·42·222·223
BA000031 3·21·35·529·108·51·84 45·312·69·42·13·187·163
BA000037 3·21·35·529·159·84 261·96·69·42·13·69·233·19·29 92·16·54·177·269·223
CP000020 3·21·211·353·108·51·49·35 92·16·24·30·177·492 194·77·51·73·436
FM954972 3·21·35·140·36·353·88·155 25·20·216·96·111·13·187·134·29 194·77·52·20·52·177·24·235
CP002284 3·21·35·529·243 45·312·69·55·69·35·217·29 92·16·24·30·177·410·82 194·128·250·259
FO203526 3·21·223·341·108·135 468·82·103·149·29 92·16·24·30·177·251·241 194·201·216·209·11
CP009354 3·21·35·374·155·79·164 45·216·207·13·69·118·134·29 87·5·16·54·177·251·241 194·129·30·42·177·153·21·85

Symbol (·) indicates RE site in the gene sequences (–): no digestion

Additional unique patterns: (i) AluI—138·16·601·64·12 (FM954972), (ii) RsaI—257·26·17·20·511 (AE003852) and, (iii) TaqI—249·125·132·325 (CP002284) and 131·251·139·310 (FO203526)

Table 7.

Unique in silico restriction endonuclease digestion pattern (5′–3′) of rph gene of Vibrio genomes

Vibrio genome Restriction endonucleases
CviAII RsaI BfuCI HpyCH4V AluI
AE003852 192·69·69·142·98·61·86 67·191·114·6·339 278·28·26·99·88·198 205·192·296·24
BA000031 192·138·228·73·86 219·39·120·151·188 298·14·85·9·12·299 316·45·86·192·78
BA000037 192·69·211·86·73·86 219·39·254·205 12·12·282·284·127
CP000020 429·43·86·12·78·69 117·70·71·114·6·339 64·57·177·99·203·117
FM954972 140·118·114·6·151·188 24·254·54·385 397·9·99·140·72 639·9·52·17
CP002284 192·69·211·159·86
FO203526 261·57·154·98·147 110·30·238·339 12·507·71·127 397·9·12·63·236
CP009354 192·138·258·129 140·47·71·114·157·188 12·12·282·284·127 447·100·92·78

Symbol (·) indicates RE site in the gene sequences (–): no digestion

Additional unique patterns: (i) BfaI—8·302·9·398 (CP000020) and 310·120·69·218 (CP009354), (ii) TaqI—128·177·129·219·64 (BA000031) and 385·115·93·124 (FO203526)

Table 8.

Unique in silico restriction endonuclease digestion pattern (5′–3′) of ilvH gene of Vibrio genomes

Vibrio genome Restriction endonucleases
AluI HpyCH4V RsaI TaqI Tru9I
AE003852 168·21·66·94·141·5 165·27·27·70·77·129 82·227·69·117
BA000031 168·21·180·21·105 165·54·147·129 209·100·49·137 291·101·42·61
BA000037 165·130·71·7·122 218·91·49·20·117 236·9·93·157
CP000020 203·88·153·51 97·39·63·103·182·11
FM954972 168·21·45·261 209·9·54·106·53·64 89·65·49·42·199·51 22·177·13·283
CP002284 121·44·27·27·147·129 22·114·76·273·7·3
FO203526 198·57·58·182 43·122·27·27·76·71·129 89·249·54·103
CP009354 168·30·36·261 309·49·7·13·117 190·22·90·190·3

Symbol (·) indicates RE site in the gene sequences (–): no digestion

Table 9.

Unique in silico restriction endonuclease digestion pattern (5′–3′) of recR gene of Vibrio genomes

Vibrio genome Restriction endonucleases
AluI HpyCH4V RsaI TaqI
AE003852
BA000031 454·48·38·6·54 123·304·55·118 180·129·90·98·88·15
BA000037 126·414·6·57 123·13·79·388 257·117·9·100·24·96
CP000020 73·53·4·347·25·92·9 123·145·159·176 320·177·61·45
FM954972 136·341·63·6·54 123·145·9·323 6·177·33·384
CP002284 126·163·251·6·48·6
FO203526 246·231·63·54·6 257·126·7·195·15
CP009354 126·351·69·48·9 123·13·132·9·326 183·33·342·45

Symbol (·) indicates RE site in the gene sequences (–): no digestion

Additional unique patterns: (i) BfaI—19·108·376·100 (CP000020), (ii) CviAII—145·5·367·86 (BA000037) and (iii) Tru9I—217·177·203·3 (CP009354)

The rest 15 genes were effective in distinguishing certain genes with low frequency. The information on their RE digestion pattern can be used to supplement that generated with other genes. Thus, though occasional, these genes have some potential as biomarkers (Tables S14–28).

Discussion

Bacterial identification based on rrs gene has turned out to be quite effective. However, organisms having multiple copies of this gene show high Intra-genomic heterogeneity, which may lead to over estimation of the existing variability [37, 38]. A high level of similarity among the different copies of rrs present in different Vibrio strains further complicates the issue of closely related organisms. In the case of Vibrio species, a host of genes have been employed for their identification from time to time: dnaJ, flaE, hsp60, notI, ompW, recA, rpoA, rpoB, rpoX, rpoS, sfiI, sodB, tdh, tlh, toxR, toxR, trh, vcgC, vhhP2, viuB, and vvhA. It indicates that no consensus gene is available so far. It further highlights that rrs has not been very fruitful for accurate identification. Significantly low sequence similarity of the dnaJ gene (77.9 %) compared to 97.2 % of the rrs gene, implied its high discriminatory power for Vibrio species [9]. Our study has also shown that rrs alone cannot be used for identifying Vibrio up to the species level. In fact, tlh gene studied through LAMP, could identify 143 V. parahaemolyticus strains but was not able to identify 33 other Vibrio spp. and a large number of non-Vibrio strains [39]. LAMP assay targeting toxR gene was able to correctly detect 36 V. parahaemolyticus strains [40]. Multiplex PCR sequencing of rpoB along with hsp60, sodB and flaE genes was employed to distinguish four species of Vibrio: V. cholerae, V. mimicus, V. parahaemolyticus, and V. vulnificus. Here, rrs gene was used as positive internal control [14], which implies that this gene alone was not sufficient for identifying Vibrio species.

Some of the genes reported in literature are among the common genes detected in our study; these include flaE, recA, rpoA, rpoB, sodB.In silico RE digestion of these genes (Tables S29–S33) revealed that they can also be used to distinguish all eight Vibrio species except rpoB. RE digestion of rpoB gene leads to an unmanageable number of fragments (25–30), which are thus difficult to analyse. The later cannot be recommended as candidate gene also on account of the fact that its amplification is not easy due to its large size (4029 nts; Table S30). Our study allows us to conclude that genes—fadA, hisD, and recF varying in size between 1080 and 1296 nts (in combination with certain REs) are the most suitable candidates for identification of all 8 Vibrio species. Here, we need to amplify the specific gene by polymerase chain reaction and subject the amplicon to defined RE. The second category of genes—dapF, ilvH, lpxC, recR, rph and ruvB (495–1004 nts) provide reasonably good information, which can also be exploited for identification of Vibrio. As we can expect these genes to be present in other related genera, such as hisD gene in Escherichia coli, an analysis of RE digestions obtained with ten REs used here (data not shown), revealed clear cut differences between the two genera. This protocol can thus be exploited for rapid diagnosis of Vibrio species.

Electronic supplementary material

Acknowledgments

We are thankful to the Director of CSIR-Institute of Genomics and Integrative Biology (IGIB), and CSIR project GENESIS (BSC0121) for providing the necessary funds, facilities and moral support. Authors are also thankful to Academy of Scientific & Innovative Research (AcSIR), New Delhi.

References

  • 1.Euzeby JP (2013) List of prokaryotic names with standing in nomenclature—Genus Vibrio. 2013. http://www.bacterio.net/vibrio.html
  • 2.Austin B. Vibrios as causal agents of zoonoses. Vet Microbiol. 2010;140:310–317. doi: 10.1016/j.vetmic.2009.03.015. [DOI] [PubMed] [Google Scholar]
  • 3.Kongrueng J, Tansila N, Mitraparp-arthorn P, Nishibuchi M, Vora GJ, Vuddhakul V. LAMP assay to detect Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease in shrimp. Aquac Int. 2015 [Google Scholar]
  • 4.Reilly GD, Reilly CA, Smith EG, Baker-Austin C (2011) Vibrio alginolyticus-associated wound infection acquired in British waters, Guernsey. Euro Surveill 16:pii1994. http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19994 [PubMed]
  • 5.Ryu HH, Lee JY, Yun NR, Kim DM. Necrotizing soft tissue infection with gas formation caused by Vibrio vulnificus and misdiagnosed as Pseudomonas aeruginosa. Am J Emerg Med. 2013;31:464–468. doi: 10.1016/j.ajem.2012.09.001. [DOI] [PubMed] [Google Scholar]
  • 6.Choopan N, Louis V, Huq A, Colwell RR. Simple procedure for rapid identification of Vibrio cholerae from the aquatic environment. Appl Environ Microbiol. 2002;68:995–998. doi: 10.1128/AEM.68.2.995-998.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Ottaviani D, Masini L, Bacchiocchi S. A biochemical protocol for the isolation and identification of current species of Vibrio in seafood. J Appl Microbiol. 2003;95:1277–1284. doi: 10.1046/j.1365-2672.2003.02105.x. [DOI] [PubMed] [Google Scholar]
  • 8.Clark AE, Kaleta EJ, Arora A, Wolk DM. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev. 2013;26:547–603. doi: 10.1128/CMR.00072-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Nhung PH, Ohkusu K, Miyasaka J, Sun XS, Ezaki T. Rapid and specific identification of 5 human pathogenic Vibrio species by multiplex polymerase chain reaction targeted to dnaJ gene. Diagn Microbiol Infect Dis. 2007;59:271–275. doi: 10.1016/j.diagmicrobio.2007.05.016. [DOI] [PubMed] [Google Scholar]
  • 10.Kim HS, Kim DM, Neupane GP, Lee YM, Yang NW, Jang SJ, Jung SI, Park KH, Park HR, Lee CS, Lee SH. Comparison of conventional, nested, and real-time PCR assays for rapid and accurate detection of Vibrio vulnificus. J Clin Microbiol. 2008;46:2992–2998. doi: 10.1128/JCM.00027-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Mendes-Marques CL, Hofer E, Leal NC. Development of duplex-PCR for identification of Aeromonas species. Rev Soc Bras Med Trop. 2013;46:355–357. doi: 10.1590/0037-8682-1344-2013. [DOI] [PubMed] [Google Scholar]
  • 12.Kam KM, Luey CK, Tsang YM, Law CP, Chu MY, Cheung TL, Chiu AW. Molecular subtyping of Vibrio cholerae O1 and O139 by pulsed-field gel electrophoresis in Hong Kong: correlation with epidemiological events from 1994 to 2002. J Clin Microbiol. 2003;41:4502–4511. doi: 10.1128/JCM.41.10.4502-4511.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Taneja N, Sangar G, Chowdhury G, Ramamurthy T, Mishra A, Singh M, Sharma M. Molecular epidemiology of Vibrio cholerae causing outbreaks & sporadic cholera in northern India. Indian J Med Res. 2012;136:656–663. [PMC free article] [PubMed] [Google Scholar]
  • 14.Tarr CL, Patel JS, Puhr ND, Sowers EG, Bopp CA, Strockbine NA. Identification of Vibrio isolates by a multiplex PCR assay and rpoB sequence determination. J Clin Microbiol. 2007;45:134–140. doi: 10.1128/JCM.01544-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Bhattacharyya N, Hou A. A pentaplex PCR assay for detection and characterization of Vibrio vulnificus and Vibrio parahaemolyticus isolates. Lett Appl Microbiol. 2013;57:233–240. doi: 10.1111/lam.12101. [DOI] [PubMed] [Google Scholar]
  • 16.Han F, Ge B. Evaluation of a loop-mediated isothermal amplification assay for detecting Vibrio vulnificus in raw oysters. Foodborne Pathog Dis. 2008;5:311–320. doi: 10.1089/fpd.2008.0084. [DOI] [PubMed] [Google Scholar]
  • 17.Srisuk C, Chaivisuthangkura P, Rukpratanporn S, Longyant S, Sridulyakul P, Sithigorngul P. Rapid and sensitive detection of Vibrio cholerae by loop-mediated isothermal amplification targeted to the gene of outer membrane protein ompW. Lett Appl Microbiol. 2010;50:36–42. doi: 10.1111/j.1472-765X.2009.02749.x. [DOI] [PubMed] [Google Scholar]
  • 18.Plaon S, Longyant S, Sithigorngul P, Chaivisuthangkura P. Rapid and sensitive detection of Vibrio alginolyticus by loop-mediated isothermal amplification combined with a lateral flow dipstick targeted to the rpoX gene. J Aquat Anim Health. 2015;27:156–163. doi: 10.1080/08997659.2015.1037468. [DOI] [PubMed] [Google Scholar]
  • 19.Thongkao K, Longyant S, Silprasit K, Sithigorngul P, Chaivisuthangkura P. Rapid and sensitive detection of Vibrio harveyi by loop-mediated isothermal amplification combined with lateral flow dipstick targeted to vhhP2 gene. Aquac Res. 2015;46:1122–1131. doi: 10.1111/are.12266. [DOI] [Google Scholar]
  • 20.Li Y, Zheng Z, Zhao Y, Wei X, Zhu L, Huang X. A culture-free method for detection of Vibrio vulnificus from coastal seawater based on loop-mediated isothermal amplification targeting vcgC gene. Acta Oceanol Sin. 2010;29:93–97. doi: 10.1007/s13131-010-0027-x. [DOI] [Google Scholar]
  • 21.Liu GF, Wang JY, Xu LW, Ding X, Zhou SN. Sensitive and rapid detection of Vibrio corallilyticus by loop-mediated isothermal amplification targeted to the alpha subunit gene of RNA polymerase. Lett Appl Microbiol. 2010;51:301–307. doi: 10.1111/j.1472-765X.2010.02894.x. [DOI] [PubMed] [Google Scholar]
  • 22.Sun X, Xu Q, Pan Y, Lan W, Zhao Y, Wu VCH. A loop-mediated isothermal amplification method for rapid detection of Vibrio parahaemolyticus in seafood. Ann Microbiol. 2012;62:263–271. doi: 10.1007/s13213-011-0255-0. [DOI] [Google Scholar]
  • 23.Surasilp T, Longyant S, Rukpratanporn S, Sridulyakul P, Sithigorngul P, Chaivisuthangkura P. Rapid and sensitive detection of Vibrio vulnificus by loop-mediated isothermal amplification combined with lateral flow dipstick targeted to rpoS gene. Mol Cell Probes. 2011;25:158–163. doi: 10.1016/j.mcp.2011.04.001. [DOI] [PubMed] [Google Scholar]
  • 24.Thompson FL, Gevers D, Thompson CC, Dawyndt P, Naser S, Hoste B, Munn CB, Swings J. Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol. 2005;71:5107–5115. doi: 10.1128/AEM.71.9.5107-5115.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Gonzalez-Escalona N, Martinez-Urtaza J, Romero J, Espejo RT, Jaykus LA, DePaola A. Determination of molecular phylogenetics of Vibrio parahaemolyticus strains by multilocus sequence typing. J Bacteriol. 2008;190:2831–2840. doi: 10.1128/JB.01808-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Teh CS, Chua KH, Thong KL. Multiple-locus variable-number tandem repeat analysis of Vibrio cholerae in comparison with pulsed field gel electrophoresis and virulotyping. J Biomed Biotechnol. 2010;2010:817190. doi: 10.1155/2010/817190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Liu D. Identification, subtyping and virulence determination of Listeria monocytogenes, an important food borne pathogen. J Med Microbiol. 2006;55:645–659. doi: 10.1099/jmm.0.46495-0. [DOI] [PubMed] [Google Scholar]
  • 28.Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L, Gill SR, Nelson KE, Read TD, Tettelin H, Richardson D, Ermolaeva MD, Vamathevan J, Bass S, Qin H, Dragoi I, Sellers P, McDonald L, Utterback T, Fleishmann RD, Nierman WC, White O, Salzberg SL, Smith HO, Colwell RR, Mekalanos JJ, Venter JC, Fraser CM. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature. 2000;406:477–483. doi: 10.1038/35020000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Porwal S, Lal S, Cheema S, Kalia VC. Phylogeny in aid of the present and novel microbial lineages: diversity in Bacillus. PLoS One. 2009;4:e4438. doi: 10.1371/journal.pone.0004438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Kalia VC, Mukherjee T, Bhushan A, Joshi J, Shankar P, Huma N. Analysis of the unexplored features of rrs (16S rDNA) of the genus Clostridium. BMC Genom. 2011;12:18. doi: 10.1186/1471-2164-12-18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Lal D, Verma M, Lal R. Exploring internal features of 16S rRNA gene for identification of clinically relevant species of the genus Streptococcus. Ann Clin Microbiol Antimicrob. 2011;10:28. doi: 10.1186/1476-0711-10-28. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Bhushan A, Joshi J, Shankar P, Kushwah J, Raju SC, Purohit HJ, Kalia VC. Development of genomic tools for the identification of certain Pseudomonas up to species level. Indian J Microbiol. 2013;53:253–263. doi: 10.1007/s12088-013-0412-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Bhushan A, Mukherjee T, Joshi J, Shankar P, Kalia VC. Insights into the origin of Clostridium botulinum strains: evolution of distinct restriction endonuclease sites in rrs (16S rRNA gene) Indian J Microbiol. 2015;55:140–150. doi: 10.1007/s12088-015-0514-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Kalia VC. Let’s explore the latent features of genes to identify bacteria. J Mol Genet Med. 2015;9:e105. [Google Scholar]
  • 35.Kalia VC, Kumar P. Genome wide analysis for searching markers to diagnose Yersinia infections. Indian J Microbiol. 2015 doi: 10.1007/s12088-015-0552-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Kekre A, Bhushan A, Kumar P, Kalia VC. Genome wide analysis for searching novel markers to rapidly identify Clostridium strains. Indian J Microbiol. 2015;55:250–257. doi: 10.1007/s12088-015-0535-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Pei AY, Oberdorf WE, Nossa CW, Agarwal A, Chokshi P, Gerz EA, Jin Z, Lee P, Yang L, Poles M, Brown SM, Sotero S, DeSantis T, Brodie E, Nelson K, Pei Z. Diversity of 16S rRNA genes within individual prokaryotic genomes. Appl Environ Microbiol. 2010;76:3886–3897. doi: 10.1128/AEM.02953-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Chen J, Miao X, Xu M, He J, Xie J, Wu X, Chen G, Yu L, Zhang W. Intra-genomic heterogeneity in 16S rRNA genes in strictly anaerobic clinical isolates from periodontal abscesses. PLoS ONE. 2015;10:e0130265. doi: 10.1371/journal.pone.0130265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Yamazaki W, Ishibashi M, Kawahara R, Inoue K. Development of a loop-mediated isothermal amplification assay for sensitive and rapid detection of Vibrio parahaemolyticus. BMC Microbiol. 2008;8:163. doi: 10.1186/1471-2180-8-163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Chen S, Ge B. Development of a toxR-based loop-mediated isothermal amplification assay for detecting Vibrio parahaemolyticus. BMC Microbiol. 2010;10:41. doi: 10.1186/1471-2180-10-41. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials


Articles from Indian Journal of Microbiology are provided here courtesy of Springer

RESOURCES