Skip to main content
SpringerPlus logoLink to SpringerPlus
. 2015 Oct 14;4:608. doi: 10.1186/s40064-015-1405-9

Korobov polynomials of the third kind and of the fourth kind

Taekyun Kim 1,2, Dae San Kim 3,
PMCID: PMC4628049  PMID: 26543743

Abstract

The first degenerate version of the Bernoulli polynomials of the second kind appeared in the paper by Korobov (Math Notes 2:77–19, 1996; Proceedings of the IV international conference modern problems of number theory and its applications, pp 40–49, 2001). In this paper, we study two degenerate versions of the Bernoulli polynomials of the second kind which will be called Korobov polynomials of third kind and of the fourth kind. Some properties, identities, recurrence relations and connections with other polynomials are investigated by using umbral calculus.

Keywords: Korobov polynomials of the third kind and of the fourth kind, umbral calculus

Background

The Bernoulli polynomials of the second kind bnx are given by the generating function

tlog1+t1+tx=n=0bnxtnn!,see Kim et al. 2014, 2015; Roman 1984. 1.1

When x=0, bn=bn0 are called Bernoulli numbers of the second kind. The degenerate version of the Bernoulli polynomials of the second kind are called Korobov polynomials of the first kind. We note here that the Carlitz degerate Bernoulli polynomials were rediscovered by Ustinov under the name of Korobov polynomial of the second kind (see Pylypiv and Maliarchuk 2014; Ustinov 2003).

The Daehee polynomials Dnx are defined by the generating function

log1+tt1+tx=n=0Dnxtnn!,see Kim et al. 2014, 2015. 1.2

For x=0, Dn=Dn0 are called Daehee numbers.

The Korobov polynomials Knλ,x of the first kind are given by the generating function

λt1+tλ-11+tx=n=0Knxλtnn!,see Korobov 1996; Korobov 2001. 1.3

When x=0, Knλ=Kn0λ are called Korobov numbers of the first kind.

In the following, we will review very briefly some necessary things on umbral calculus. Our basic reference is Roman (1984). Also, one is asked to look at more recent papers on umbral calculus (Nisar et al. 2015; Srivastava et al. 2014).

Let C be the complex number field and let F be the set of all formal power series in the variable t over C with

F=ft=k=0akk!tkakC. 1.4

Let P=Cx and let P be the vector space of all linear functionals on P. For LP, the action of the linear functional L on a polynomial px is denoted by Lpx with

L+Mpx=Lpx+Mpx,cLpx=cLpx,

where c is a complex constant (see Kim 2014; Roman 1984).

For ft=k=0aktkk!F, we define a linear functional on P by setting

ftxn=an,for alln0,see Kim et al. 2014; Roman 1984. 1.5

Thus, by (1.5), we easily get

tkxn=n!δn,k,n,k0, 1.6

where δn,k is the Kronecker’s symbol.

Let fLt=k=0Lxktnk!. Then, by (1.6), we get fLtxn=Lxn. Additionallly, the mapping LfLt is a vector space isomorphism from P onto F. Henceforth, F denotes both the algebra of formal power series in t and the vector space of all linear functionals on P, and so an element ft of F can be regarded as both a formal power series and a linear functional. We refer to F as the umbral algebra. The umbral calculus is the study of umbral algebra (see Kim 2014; Roman 1984). From (1.6), we can easily derive eytxn=yn. So eytpx=py. The order oft of a power series ft0 is the smallest nonnegative integer k for which the coefficient at tk does not vanish. For ftF and pxP, we have

ft=k=0ftxktkk!,px=k=0tkpxxkk!. 1.7

Thus, by (1.7), we get

pk0=ddxkpxx=0=tkpx=1pkx. 1.8

From (1.8), we note that

tkpx=pkx=dkdxkpx,eytpx=px+y,see Roman 1984. 1.9

Let ft,gtF such that oft=1 and ogt=0. Then there exists a unique sequence snxdegsnx=n of polynomials such that gtftksnx=n!δn,k, for n,k0. The sequence snx is called the Sheffer sequence for the pair gt,ft, which is denoted by snxgt,ft. For snxgt,ft, we have

ftsnx=nsn-1x,nN0, 1.10

and

1gf¯texf¯t=k=0skxk!tk,for allxC. 1.11

Here f¯t is the compositional inverse of ft (see Kim and Mansour 2014; Roman 1984).

The conjugation representation for snxgt,ft is given by

snx=k=0n1k!gf¯t-1f¯tkxnxk,n0,see Carlitz 1979; Roman 1984. 1.12

Let us consider the following two Sheffer sequences:

snxgt,ft,rnxht,lt. 1.13

Then, we have

snx=m=0nCn,mrmx,n0, 1.14

where

Cn,m=1m!hf¯tgf¯tlf¯tmxn,see Kim et al. 2014; Roman 1984. 1.15

The first degenerate version of the Bernoulli polynomials of the second kind appeared in the paper by Korobov (2001; 1996). In this paper, we study two degenerate versions of the Bernoulli polynomials of the second kind which will be called Korobov polynomials of the third kind and of the fourth kind. Some properties, identities and recurrence relations for them are investigated by using umbral calculus. In addition, some connections with other polynomials are studied for which one refers to the related papers (Dattoli et al. 2006, 2004).

Korobov polynomials of the third kind and of the fourth kind

Now, we introduce Korobov polynomials of the third kind Kn,3xλ and of the fourth kind Kn,4xλ, respectively, given by the generating functions

log1+λtλlog1+t1+tx=n=0Kn,3xλtnn!, 2.1

and

log1+λt1+tλ-11+tx=n=0Kn,4xλtnn!. 2.2

When x=0, Kn,3λ=Kn,30,λ and Kn,4λ=Kn,40λ are called Korobov numbers of the third kind and of the fourth kind, respectively.

As all λt1+tλ-1=t1+tλ-1λ, log1+λtλlog1+t=log1+λt1λlog1+t, log1+λt1+tλ-1=log1+λt1λ1+λtλ-1λ tend to tlog1+t as λ0, limλ0Knxλ=limλ0Kn,3xλ=limλ0Kn,4xλ=bnx, n0. We observe first that Kn,3xλ and Kn,4xλ are Sheffer sequences for the respective pairs λtlog1+λet-1,et-1 and eλt-1log1+λet-1,et-1. That is,

Kn,3xλλtlog1+λet-1,et-1,

and

Kn,4xλeλt-1log1+λet-1,et-1. 2.3

From (1.12) and (2.2), we have

Kn,3xλ=k=0n1k!log1+λtλlog1+tlog1+tkxnxk. 2.4

We observe that

log1+λtλlog1+tlog1+xkxn=log1+λtλlog1+tlog1+xkxn=log1+λtλlog1+tk!l=kS1l,ktll!xn=k!l=knnlS1l,klog1+λtλttlog1+txn-l=k!l=knnlS1l,klog1+λtλtm=0bmtmm!xn-l=k!l=knnlS1l,km=0n-ln-lmbmlog1+λtλtxn-l-m=k!l=knnlS1l,km=0n-ln-lmbmj=0Djλjtjj!xn-l-m=k!l=knnlS1l,km=0n-ln-lmbmDn-l-mλn-l-m=k!l=knm=0n-lnln-lmS1l,kbmDn-l-mλn-l-m, 2.5

where S1n,m is the Stirling number of the first kind defined by

xx-1x-n+1=xn=l=0nS1n,lxl,n0.

Therefore, by (2.4) and (2.5), we have

Theorem 1

Forn0, we have

Kn,3xλ=k=0nl=knm=0n-lnln-lmS1l,kbn-l-mDmλmxk.

From (1.12) and (2.3), we have

Kn,4xλ=k=0n1k!log1+λt1+tλ-1log1+tkxnxk. 2.6

We observe that

log1+λt1+tλ-1log1+tkxn=k!l=knnlS1l,klog1+λtλtλt1+tλ-1xn-l=k!l=knnlS1l,klog1+λtλtm=0Kmλtmm!xn-l=k!l=knnlS1l,km=0n-ln-lmKmλlog1+λtλtxn-l-m=k!l=knnlS1l,km=0n-ln-lmKmλDn-l-mλn-l-m=k!l=knm=0n-lnln-lmS1l,kKn-l-mλDmλm. 2.7

Therefore, by (2.6) and (2.7), we obtain the following theorem.

Theorem 2

Forn0, we have

Kn,4xλ=k=0nl=knm=0n-lnln-lmS1l,kKn-l-mλDmλmxk.

By (1.6) and (2.1), we easily get

Kn,3yλ=log1+λtλlog1+t1+tyxn=log1+λtλlog1+t1+tyxn=log1+λtλlog1+tl=0yltll!xn=l=0nnlyllog1+λtλlog1+txn-l=l=0nnlylm=0n-ln-lmbmDn-l-mλn-l-m=l=0nnlylm=0n-ln-lmbn-l-mDmλm=l=0nm=0n-lnln-lmbn-l-mDmλmyl. 2.8

Thus, by (2.8), we get

Kn,3xλ=l=0nm=0n-lnln-lmbn-l-mDmλmxl,n0. 2.9

From (1.6) and (2.2), we note that

Kn,4yλ=log1+λt1+tλ-11+tyxn=log1+λt1+tλ-11+tyxn=l=0nnlyllog1+λt1+tλ-1xn-l=l=0nnlylm=0n-ln-lmKmλDn-l-mλn-l-m=l=0nnlylm=0n-ln-lmKn-l-mλDmλm=l=0nm=0n-lnln-lmKn-l-mλDmλmyl. 2.10

Thus, by (2.10), we get

Kn,4xλ=l=0nm=0n-lnln-lmKn-l-mλDmλmxl. 2.11

From (2.2), we note that

Kn,3xλλtlog1+λet-1,et-1λtlog1+λet-1Kn,3xλ=xn1,et-1. 2.12

By (2.12), we get

Kn,3xλ=log1+λet-1λtxn=k=0nS1n,klog1+λet-1λtxk=k=0nS1n,ket-1tlog1+λet-1λet-1xk=k=0nS1n,ket-1tl=0kDlλlet-1ll!xk=k=0nS1n,ket-1tl=0kDlλlm=lS2m,ltmm!xk=k=0nS1n,kl=0kDlλlm=lkkmS2m,let-1txk-m. 2.13

We observe that

et-1txk-m=j=1tj-1j!xk-m=j=01j+1!tjxk-m=j=0k-m1j+1!tjxk-m=j=0k-m1j+1k-mjxk-m-j=j=0k-m1k-m-j+1k-mjxj. 2.14

Thus, by (2.13) and (2.14), we have

Kn,3xλ=k=0nl=0km=lkj=0k-m1k-m-j+1kmk-mjS1n,kS2m,lDlλlxj=k=0nl=0km=0k-lj=0m1m-j+1kmmjS1n,kS2k-m,lDlλlxj=j=0nk=jnl=0k-jm=jk-l1k+1k+1m+1m+1jS1n,kS2k-m,lDlλlxj, 2.15

where S2n,k is the Stirling number of the second kind given by

xn=l=0nS2n,lxl,n0.

Therefore, by (2.15), we obtain the following theorem expressing Kn,3xλ in terms of the Stirling numbers of the first kind and of the second and Daehee numbers.

Theorem 3

Forn0, we have

Kn,3xλ=j=0nk=jnl=0k-jm=jk-l1k+1k+1m+1m+1jS1n,kS2k-m,lDlλlxj.

From (2.3), we have

eλt-1log1+λet-1Kn,4xλ=xn1,et-1,n0. 2.16

Thus, by (2.16), we get

Kn,4xλ=log1+λet-1eλt-1xn=k=0nS1n,klog1+λet-1eλt-1xk=k=0nS1n,kλet-1eλt-1log1+λet-1λet-1xk=k=0nS1n,kl=0kDlλlm=lkkmS2m,let-1tλteλt-1xk-m, 2.17

Now, we observe that

et-1tλteλt-1xk-m=et-1tj=0k-mBjλjtjj!xk-m=j=0k-mk-mjBjλjet-1txk-m-j=j=0k-mk-mjBjλji=0k-m-j1i+1k-m-jixk-m-j-i, 2.18

where Bn is the n-th Bernoulli number given by the generating function

tet-1=n=0Bntnn!,see Bayad and kim 2010; Kim et al. 2012, 2015.

Thus, by (2.17) and (2.18), we get

Kn,4xλ=k=0nS1n,kl=0kDlλlm=0k-lkmS2k-m,l×j=0mmjBm-jλm-ji=0j1j-i+1jixi=i=0nk=inl=0k-im=ik-lj=im1j-i+1km×mjjiλl+m-jS1n,kS2k-m,lDlBm-jxi=i=0nk=inl=0k-im=ik-lj=im1k+1k+1m+1m+1j+1j+1iλl+m-j×S1n,kS2k-m,lDlBm-jxi. 2.19

Therefore, by (2.19), we obtain the following theorem expressing Kn,4xλ in terms of the Stirling numbers of the first kind and of the second kind, Daehee numbers and Bernoulli numbers.

Theorem 4

For n0, we have

Kn,4xλ=i=0nk=inl=0k-im=ik-lj=im1k+1k+1m+1m+1j+1j+1i×λl+m-jS1n,kS2k-m,lDlBm-jxi.

From (2.8), we have

Kn,3yλ=l=0nnlyllog1+λtλlog1+txn-l=l=0nnlyli=0Ki,3λtii!xn-l=l=0nnlylKn-l,3λ. 2.20

Thus, by (2.20), we get

Kn,3xλ=l=0nnlKn-l,3λxl. 2.21

From (2.10), we have

Kn,4yλ=l=0nnlyllog1+λt1+tλ-1xn-l=l=0nnlyli=0Ki,4λtii!xn-l=l=0nnlylKn-l,4λ. 2.22

By (2.22), we get

Kn,4xλ=l=0nnlKn-l,4λxl,n0. 2.23

From (2.19), we have

Kn,3yλ=log1+λtλlog1+t1+tyxn=log1+λtλttlog1+t1+tyxn=l=0nnlblylog1+λtλtxn-l=l=0nnlblym=0Dmλmtmm!xn-l=l=0nnlblyDn-lλn-l. 2.24

Thus, by (2.24), we get

Kn,3xλ=l=0nnlDn-lλn-lblx,n0. 2.25

From (2.10), we can also derive the following equation:

Kn,4xλ=log1+λt1+tλ-11+tyxn=log1+λtλtλt1+tλ-11+tyxn=log1+λtλtl=0Klyλtll!xn=l=0nnlKlyλlog1+λtλtxn-l=l=0nnlKlyλm=0Dmλmtmm!xn-l=l=0nnlKlyλDn-lλn-l. 2.26

Thus, by (2.26), we get

Kn,4xλ=l=0nnlDn-lλn-lKlxλ. 2.27

Therefore, by (2.21), (2.23), (2.25) and (2.27), we obtain the following theorem expressing Kn,3xλ and Kn,4xλ both in terms of falling factorial polynomials. Also, we express Kn,3xλ and Kn,4xλ respectively by Bernoulli polynomials of the second kind and Korobov polynomials of the first kind.

Theorem 5

Forn0, we have

Kn,3xλ=l=0nnlKn-l,3λxl=l=0nnlDn-lλn-lblx,

and

Kn,4xλ=l=0nnlKn-l,4λxl=l=0nnlDn-lλn-lKlxλ.

It is easy to see that

xn1,t,λtlog1+λet-1Kn,3xλ1,et-1. 2.28

For n1, we have

λtlog1+λet-1Kn,3xλ=xtet-1nx-1xn=xBn-1nx=k=0n-1n-1kBknxn-k=k=1nn-1k-1Bn-knxk. 2.29

Thus, by (2.29), we get

Kn,3xλ=k=1nn-1k-1Bn-knlog1+λet-1λtxk=k=1nn-1k-1Bn-knl=0km=0k-lj=0m1k+1k+1m+1m+1jS2k-m,lDlλlxj=k=0nl=0km=0k-lj=0m1k+1n-1k-1k+1m+1m+1jS2k-m,lλlDlBn-knxj=j=0nk=jnl=0k-jm=jk-l1k+1n-1k-1k+1m+1m+1jS2k-m,lλlDlBn-knxj. 2.30

From (2.3), we note that

xn1,t,eλt-1log1+λet-1Kn,4xλ1,et-1. 2.31

For n1, by (2.31), we get

eλt-1log1+λet-1Kn,4xλ=xtet-1nx-1xn=xBn-1nx=k=1nn-1k-1Bn-knxk. 2.32

Thus, by (2.32), we have

Kn,4xλ=k=1nn-1k-1Bn-knlog1+λet-1eλt-1xk=k=1nn-1k-1Bn-knl=0km=0k-lj=0mi=0j1j-i+1km×mjjiλl+m-jS2k-m,lDlBm-jxi=i=0nk=inl=0k-im=ik-lj=im1j-i+1n-1k-1kmmjji×λl+m-jS2k-m,lDlBm-jBn-knxi=i=0nk=inl=0k-im=ik-lj=im1k+1n-1k-1k+1m+1m+1j+1×j+1iλl+m-jS2k-m,lDlBm-jBn-knxi. 2.33

Therefore, by (2.30) and (2.33), we obtain the following theorem.

Theorem 6

Forn0, we have

Kn,3xλ=j=0nk=jnl=0k-jm=jk-l1k+1n-1k-1k+1m+1m+1jS2k-m,lλlDlBn-knxj

and

Kn,4xλ=i=0nk=inl=0k-im=ik-lj=im1k+1n-1k-1k+1m+1m+1j+1×j+1iλl+m-jS2k-m,lDlBm-jBn-knxi

For snxgt,ft, we note that Sheffer identity is given by

snx+y=j=0nnjsjxpn-jy,wherepnx=gtsnx. 2.34

By (2.2) and (2.34), we get

Kn,3x+yλ=j=0nnjKj,3xλyn-j, 2.35

where pnx=λtlog1+λet-1Kn,3xλ=xn,n0.

From (2.3) and (2.34), we have

Kn,4x+yλ=j=0nnjKj,4xλyn-j, 2.36

where pnx=eλt-1log1+λet-1Kn,4xλ=xn.

By (1.10), we see that

et-1Kn,3xλ=nKn-1,3xλ, 2.37

and

et-1Kn,3xλ=etKn,3xλ-Kn,3xλ=Kn,3x+1λ-Kn,3xλ. 2.38

From (2.37) and (2.38), we have

nKn-1,3xλ=Kn,3x+1λ-Kn,3xλ. 2.39

By (1.10) and (2.3), we get

et-1Kn,4xλ=nKn-1,4xλ. 2.40

Thus, by (2.40), we have

Kn,4x+1λ-Kn,4xλ=nKn-1,4xλ. 2.41

Therefore, by (2.35), (2.36), (2.39) and (2.41), we obtain the following theorem.

Theorem 7

Forn0, we have

Kn,3x+yλ=j=0nnjKj,3xλyn-j,Kn,4x+yλ=j=0nnjKj,4xλyn-j,nKn-1,3xλ=Kn,3x+1λ-Kn,3xλ,

and

nKn-1,4xλ=Kn,4x+1λ-Kn,4xλ.

For snxgt,ft, we note that

ddxsnx=l=0n-1nlf¯txn-lslx. 2.42

For Kn,3xλλtlog1+λet-1,et-1, by (2.42), we get

f¯txn-l=log1+txn-l=m=1-1m-1m-1!tmm!xn-l=-1n-l-1n-l-1!. 2.43

Thus, by (2.42) and (2.43), we have

ddxKn,3xλ=l=0n-1nl-1n-l-1n-l-1!Kl,3xλ=n!l=0n-1-1n-l-1l!n-lKl,3xλ. 2.44

By the same method as (2.44), we get

ddxKn,4xλ=n!l=0n-1-1n-l-1l!n-lKl,4xλ. 2.45

Therefore, by (2.44) and (2.45), we obtain the following theorem.

Theorem 8

Forn1, we have

ddxKn,3xλ=n!l=0n-1-1n-l-1l!n-lKl,3xλ,

and

ddxKn,4xλ=n!l=0n-1-1n-l-1l!n-lKl,4xλ.

Let n1. Then, by (1.6), (2.1) and (2.3), we get

Kn,3yλ=log1+λtλlog1+t1+tyxn=tlog1+λtλlog1+t1+tyxn-1=log1+λtλlog1+tt1+tyxn-1+tlog1+λtlog1+t1+tyxn-1. 2.46

We observe that

log1+λtλlog1+tt1+tyxn-1=ylog1+λtλlog1+t1+ty-1xn-1=yKn-1,3y-1λ, 2.47

and

tlog1+λtλlog1+t=λ1+λt·λlog1+t-log1+λtλ1+tλlog1+t2=tlog1+t1t11+λt-log1+λtλlog1+t1+t-1. 2.48

By (2.48), we get

tlog1+λtlog1+t1+tyxn-1=tlog1+t1t11+λt-log1+λtλlog1+t1+t-11+tyxn-1=1n11+λt-log1+λtλlog1+t1+t-11+tytlog1+txn=1n11+λt-log1+λtλlog1+t1+t-11+tyl=0bltll!xn=1nl=0nnlbl11+λt1+tyxn-l-log1+λtλlog1+t1+ty-1xn-l=1nl=0nnlbl1+tym=0-λtmxn-l-Kn-l,3y-1λ=1nl=0nnlblm=0n-l-λmn-lm1+tyxn-l-m-Kn-l,3y-1λ=1nl=0nnlblm=0n-l-λmn-lmyn-l-m-Kn-l,3y-1λ. 2.49

For n1, from (2.46), (2.47) and (2.49), we have

Kn,3xλ-xKn-1,3x-1λ=1nl=0nnlblm=0n-l-λmn-lmxn-l-m-Kn-l,3x-1λ. 2.50

Therefore, by (2.50), we obtain the following theorem.

Theorem 9

Forn1, we have

Kn,3xλ-xKn-1,3x-1λ=1nl=0nnlblm=0n-l-λmn-lmxn-l-m-Kn-l,3x-1λ.

Remark

We note that

bnx-xbn-1x-1=limλ0Kn,3xλ-xKn-1,3x-1λ=1nl=0nnlblxn-l-bn-lx-1.

From (1.6) and (2.2), we have

Kn,4yλ=log1+λt1+tλ-11+tyxn=tlog1+λt1+tλ-11+tyxn-1=log1+λt1+tλ-1t1+tyxn-1+tlog1+λt1+tλ-11+tyxn-1, 2.51

where n1.

We note that

log1+λt1+tλ-1t1+tyxn-1=ylog1+λt1+tλ-11+ty-1xn-1=yKn-1,4y-1λ. 2.52

Now, we observe that

tlog1+λt1+tλ-1=λ1+λt1+tλ-1-log1+λtλ1+tλ-11+tλ-12=λt1+tλ-11t11+λt-log1+λt1+tλ-11+tλ-1. 2.53

Thus, by (2.53), we get

tlog1+λt1+tλ-11+tyxn-1=λt1+tλ-11t11+λt-log1+λt1+tλ-11+tλ-11+tyxn-1=1nλt1+tλ-111+λt-log1+λt1+tλ-11+tλ-11+tyxn=1n11+λt-log1+λt1+tλ-11+tλ-11+tyλt1+tλ-1xn=1n11+λt-log1+λt1+tλ-11+tλ-11+tyl=0Klλtll!xn=1nl=0nnlKlλ11+λt1+tyxn-l-log1+λt1+tλ-11+ty+λ-1xn-l=1nl=0nnlKlλ1+tym=0-λtmxn-l-Kn-1,4y+λ-1λ=1nl=0nnlKlλm=0n-l-λmn-lm1+tyxn-l-m-Kn-1,4y+λ-1λ=1nl=0nnlKlλm=0n-l-λmn-lmyn-l-m-Kn-l,4y+λ-1λ=1nl=0nnlKlλm=0n-l-λmn-lmyn-l-m-Kn-l,4y+λ-1λ. 2.54

From (2.51), (2.52) and (2.54), we have

Kn,4xλ-xKn-1,4x-1λ=1nl=0nnlKlλm=0n-l-λmn-lmxn-l-m-Kn-l,4x+λ-1λ. 2.55

Therefore, by (2.55), we obtain the following theorem.

Theorem 10

Forn1, we have

Kn,4xλ-xKn-1,4x-1λ=1nl=0nnlKlλm=0n-l-λmn-lmxn-l-m-Kn-l,4x+λ-1λ.

Let us consider the following two Sheffer sequences:

Kn,3xλλtlog1+λet-1,et-1,xn=xx+1x+n-11,1-e-t. 2.56

From (1.14) and (1.15), we have

Kn,3xλ=m=0nCn,mxm, 2.57

where

Cn,m=1m!log1+λtλlog1+t1-11+tmxn=1m!log1+λtλlog1+tl=0-1lm+l-1ltm+ll!xn=1m!l=0n-m-1lm+l-1lnm+ll!log1+λtλttlog1+txn-m-l=1m!l=0n-m-1lm+l-1lnm+ll!log1+λtλtk=0bktkk!xn-m-l=l=0n-m-1ll!m+l-1lnm+lm+lm×k=0n-m-ln-m-lkbklog1+λtλtxn-m-l-k=l=0n-mk=0n-m-l-1ll!m+l-1lnm+lm+lm×n-m-lkbkDn-m-l-kλn-m-l-k=l=0n-mk=0n-m-l-1ll!m+l-1lnm+lm+lm×n-m-lkbn-m-l-kDkλk 2.58

Therefore, by (2.57) and (2.58), we obtain the following theorem.

Theorem 11

For n0, we have

Kn,3xλ=m=0nl=0n-mk=0n-m-l-1ll!m+l-1lnm+l×m+lmn-m-lkbn-m-l-kDkλkxm.

For Kn,4xλeλt-1log1+λet-1,et-1, xn1,1-e-t, we have

Kn,4xλ=m=0nCn,mxm, 2.59

where

Cn,m=1m!log1+λt1+tλ-11-11+tmxn=1m!log1+λt1+tλ-1l=0-1lm+l-1ltm+ll!xn=1m!l=0n-m-1lm+l-1lnm+ll!log1+λtλtλt1+tλ-1xn-m-l=1m!l=0n-m-1lm+l-1lnm+ll!log1+λtλtk=0Kkλtkk!xn-m-l=1m!l=0n-m-1lm+l-1lnm+ll!k=0n-m-ln-m-lkKkλ×log1+λtλtxn-m-l-k=1m!l=0n-m-1lm+l-1lnm+ll!×k=0n-m-ln-m-lkKkλDn-m-l-kλn-m-l-k=l=0n-mk=0n-m-l-1ll!m+l-1lnm+lm+lm×n-m-lkKn-m-l-kλDkλk. 2.60

Therefore, by (2.59) and (2.60), we obtain the following theorem.

Theorem 12

Forn0, we have

Kn,4xλ=m=0nl=0n-mk=0n-m-l-1ll!m+l-1l×nm+lm+lmn-m-lkKn-m-l-kλDkλkxm.

Let us consider the following two Sheffer sequences:

Kn,3xλλtlog1+λet-1,et-1,Bnsxet-1ts,t.

Note that

n=0Bnsx=tet-1sext,see Kim et al. 2015; Sen et al. 2013; Ustinov et al. 2002,

where Bnsx are called the higher-order Bernoulli polynomials.

From (1.14) and (1.15), we have

Kn,3xλ=m=0nCn,mBmsx, 2.61

where

Cn,m=1m!tlog1+tslog1+λtλlog1+tlog1+tmxn=tlog1+tslog1+λtλlog1+t1m!log1+tmxn=tlog1+tslog1+λtλlog1+tl=mS1l,mtll!xn=l=mnnlS1l,mtlog1+tslog1+λtλlog1+txn-l=l=mnnlS1l,mtlog1+tsk=0Kk,3λtkk!xn-l=l=mnnlS1l,mk=0n-ln-lkKk,3λtlog1+tsxn-l-k=l=mnnlS1l,mk=0n-ln-lkKk,3λbn-l-ks=l=mnk=0n-lnln-lkS1l,mKk,3λbn-l-ks. 2.62

Here, the Bernoulli numbers of the second kind of order s are defined by the generating function

tlog1+ts=j=0bjstjj!,see Kim et al. 2015; Roman 1984.

Therefore, by (2.61) and (2.62), we obtain the following theorem.

Theorem 13

Forn0, we have

Kn,3xλ=m=0nl=mnk=0n-lnln-lkS1l,mKk,3λbn-l-ksBmsx.

Remark

In a similar manner, one shows that, for n0,

Kn,4xλ=m=0nl=mnk=0n-lnln-lkS1l,mKk,4λbn-l-ksBmsx.

For μC with μ1, sN, the Frobenius-Euler polynomials of order s are defined by the generating function

1-μet-μsext=n=0Hnsxμtnn!,see [1,16].

For Kn,3xλλtlog1+λet-1,et-1, Hnsxμet-μ1-μs,t, we have

Kn,3xλ=m=0nCn,mHmsxμ, 2.63

where

Cn,m=1m!1-μ+t1-μslog1+λtλlog1+tlog1+tmxn=1-μ+t1-μslog1+λtλlog1+t1m!log1+tmxn=1-μ+t1-μslog1+λtλlog1+tl=mS1l,mtll!xn=l=mnnlS1l,m1-μ+t1-μslog1+λtλlog1+txn-l=l=mnnlS1l,m1-μ+t1-μsk=0Kk,3λtkk!xn-l=l=mnnlS1l,mk=0n-ln-lkKk,3λ1-μ+t1-μsxn-l-k=11-μsl=mnnlS1l,mk=0n-ln-lkKk,3λ×j=0ssj1-μs-jtjxn-l-k=11-μsl=mnnlS1l,mk=0n-ln-lkKn-l-k,3λ×j=0ssj1-μs-jtjxk=11-μsl=mnnlS1l,mk=0n-ln-lkKn-l-k,3λk!sk1-μs-k=l=mnk=0n-lnln-lkskk!1-μkS1l,mKn-l-k,3λ. 2.64

Therefore, by (2.63) and (2.64), we obtain the following theorem.

Theorem 14

Forn0, we have

Kn,3xλ=m=0nl=mnk=0n-lnln-lkskk!1-μkS1l,mKn-l-k,3λHmsxμ.

Remark

Proceeding similarly to the above, one can show that, for n0,

Kn,4xλ=m=0nl=mnk=0n-lnln-lkskk!1-μkS1l,mKn-l-k,4λHmsxμ.

Conclusion

The first degenerate version of the Bernoulli polynomials of the second kind appeared in the paper by Korobov (1996, 2001). Here, we study two degenerate versions of the Bernoulli polynomials of the second kind which will be called Korobov polynomials of third kind and of the fourth kind. Some properties, identities, recurrence relations and connections with other polynomials are investigated by using umbral calculus.

Authors' contributions

All authors contributed equally to this work. All authors read and approved the final manuscript.

Acknowledgements

The work reported in this paper was conducted during the sabbatical year of Kwangwoon University in 2014.

Competing interests

The authors declare that they have no competing interests.

Contributor Information

Taekyun Kim, Email: tkkim@kw.ac.kr.

Dae San Kim, Email: dskim@sogang.ac.kr.

References

  1. Araci S, Acikogz M. A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials. Adv Stud Contemp Math. 2012;22(3):399–406. [Google Scholar]
  2. Bayad A, Kim T. Identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials. Adv Stud Contemp Math. 2010;20(2):247–253. [Google Scholar]
  3. Carlitz L. Degenerate Stirling, Bernoulli and EEuler numbers. Utilitas Math. 1979;15:51–88. [Google Scholar]
  4. Dattoli G, Lorenzutta S, Cesarano C. Bernstein polynomials and operational methods. J Comput Anal Appl. 2006;8(4):369–377. [Google Scholar]
  5. Dattoli G, Lorenzutta S, Ricci PE, Cesarano C. On a family of hybrid polynomials. Integral Transforms Spec Funct. 2004;15(6):485–490. doi: 10.1080/10652460412331270634. [DOI] [Google Scholar]
  6. Kim DS, Kim T, Lee S-H. Higher-order Daehee of the first kind and poly-Cauchy of the first kind mixed type polynomials. J Comput Anal Appl. 2015;18(4):699–714. [Google Scholar]
  7. Kim DS, Kim T, Rim S-H, Dolgy DV. Barnes’ multiple Bernoulli and Hermite mixed-type polynomials. Proc Jangjeon Math Soc. 2015;18(1):7–19. [Google Scholar]
  8. Kim T. Identities involving laguerre polynomials derived from umbral calculus. Russ J Math Phys. 2014;21(1):36–45. doi: 10.1134/S1061920814010038. [DOI] [Google Scholar]
  9. Kim T, Kim DS, Bayad A, Rim S-H. Identities on the Bernoulli and the Euler numbers and polynomials. Ars Combin. 2012;107:455–463. [Google Scholar]
  10. Kim T, Mansour T. Umbral calculus associated with Frobenius-type Euler polynomials. Russ J math Phys. 2014;21(4):484–493. doi: 10.1134/S1061920814040062. [DOI] [Google Scholar]
  11. Korobov NM. Special polynomials and their applications, diophantine approximations. Math Notes. 1996;2:77–89. [Google Scholar]
  12. Korobov NM (2001) On some properties of special polynomials. In: Proceedings of the IV International Conference Modern Problems of Number Theory and its Applications (Russian) (Tula, 2001), vol. 1, pp. 40–49
  13. Nisar KS, Mondal SR, Agarwal P, Al-Dhaifallah M. The umbral operator and the integration involving generalized Bessel-type functions. Open Math. 2015;13(1):426–435. doi: 10.1515/math-2015-0041. [DOI] [Google Scholar]
  14. Pylypiv VM, Maliarchuk AR. On some properties of Korobov polynomials. Carpathian Math Publ. 2014;6(1):130–133. doi: 10.15330/cmp.6.1.130-133. [DOI] [Google Scholar]
  15. Roman S. The umbral calculus, Pure and Applied Mathematics. New York: Academic Press Inc [Harcourt Brace Jovanovich, Publishers]; 1984. [Google Scholar]
  16. Şen E. Theorems on Apostol-Euler polynomials of higher order arising from Euler basis. Adv Stud Contemp Math (Kyungshang) 2013;23(2):337–345. [Google Scholar]
  17. Srivastava HM, Nisar KS, Khan MA. Some umbral calculus presentations of the Chan-Chyan-Srivastava polynomials and the Erku-Srivastava polynomials. Proyecciones. 2014;33(1):77–90. doi: 10.4067/S0716-09172014000100006. [DOI] [Google Scholar]
  18. Ustinov AV. A discrete analogue of Euler’s summation formula. Mat Zametki. 2002;71(6):931–936. doi: 10.4213/mzm397. [DOI] [Google Scholar]
  19. Ustinov AV. Korobov polynomials and umbral analysis. Chebyshevskiĭ Sb. 2003;4(8):137–152. [Google Scholar]

Articles from SpringerPlus are provided here courtesy of Springer-Verlag

RESOURCES