Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Apr 15;90(8):3294–3298. doi: 10.1073/pnas.90.8.3294

Acquired multicellular-mediated resistance to alkylating agents in cancer.

H Kobayashi 1, S Man 1, C H Graham 1, S J Kapitain 1, B A Teicher 1, R S Kerbel 1
PMCID: PMC46286  PMID: 8475071

Abstract

EMT-6 murine mammary tumor sublines highly resistant to cyclophosphamide, cis-diamminedichloro-platinum(II), or N,N',N"-triethylenethiophosphoramide were generated in vivo by sequential treatment of tumor-bearing mice with the respective drugs. Previous studies demonstrated the drug-resistant phenotypes of the sublines were not expressed in vitro when the cells were grown as monolayer cultures. We now show that expression of drug resistance--including patterns of cross-drug resistance observed in vivo--can be fully recapitulated in vitro when the cells are grown under in vivo-like, three-dimensional conditions--namely, as multicellular tumor spheroids. Moreover, the spheroids generated from all of the drug-resistant sublines manifested a much more compact structure. Immediate drug-sensitivity testing of single cells released by trypsin treatment from compact drug-resistant spheroids revealed that such cells lost much of their drug-resistant properties. The results suggest a possible mechanism of acquired drug resistance in tumors based on the response of a cell population (i.e., multicellular or tissue resistance) as opposed to classic (uni)cellular resistance mechanisms.

Full text

PDF
3294

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borst P. Genetic mechanisms of drug resistance. A review. Acta Oncol. 1991;30(1):87–105. doi: 10.3109/02841869109091819. [DOI] [PubMed] [Google Scholar]
  2. Bradley G., Juranka P. F., Ling V. Mechanism of multidrug resistance. Biochim Biophys Acta. 1988 Aug 3;948(1):87–128. doi: 10.1016/0304-419x(88)90006-6. [DOI] [PubMed] [Google Scholar]
  3. Durand R. E. Chemosensitivity testing in V79 spheroids: drug delivery and cellular microenvironment. J Natl Cancer Inst. 1986 Jul;77(1):247–252. [PubMed] [Google Scholar]
  4. Erlichman C., Vidgen D. Cytotoxicity of adriamycin in MGH-U1 cells grown as monolayer cultures, spheroids, and xenografts in immune-deprived mice. Cancer Res. 1984 Nov;44(11):5369–5375. [PubMed] [Google Scholar]
  5. Erlichman C., Vidgen D., Wu A. Cytotoxicity of cisplatin and cisdiammine-1,1-cyclobutane dicarboxylate in MGH-U1 cells grown as monolayers, spheroids, and xenografts. J Natl Cancer Inst. 1985 Sep;75(3):499–505. [PubMed] [Google Scholar]
  6. Erlichman C., Wu A. Resistance of MGH-U1 bladder cancer spheroids to vincristine. Anticancer Res. 1992 Jul-Aug;12(4):1233–1236. [PubMed] [Google Scholar]
  7. Hoffman R. M. Three-dimensional histoculture: origins and applications in cancer research. Cancer Cells. 1991 Mar;3(3):86–92. [PubMed] [Google Scholar]
  8. Jain R. K. Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J Natl Cancer Inst. 1989 Apr 19;81(8):570–576. doi: 10.1093/jnci/81.8.570. [DOI] [PubMed] [Google Scholar]
  9. Jain R. K. Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis Rev. 1990 Nov;9(3):253–266. doi: 10.1007/BF00046364. [DOI] [PubMed] [Google Scholar]
  10. Laderoute K. R., Murphy B. J., Short S. M., Grant T. D., Knapp A. M., Sutherland R. M. Enhancement of transforming growth factor-alpha synthesis in multicellular tumour spheroids of A431 squamous carcinoma cells. Br J Cancer. 1992 Feb;65(2):157–162. doi: 10.1038/bjc.1992.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Li M. L., Aggeler J., Farson D. A., Hatier C., Hassell J., Bissell M. J. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc Natl Acad Sci U S A. 1987 Jan;84(1):136–140. doi: 10.1073/pnas.84.1.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ma M., Eaton J. W. Multicellular oxidant defense in unicellular organisms. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):7924–7928. doi: 10.1073/pnas.89.17.7924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Masters J. R. Biochemical basis of resistance to chemotherapy. Radiother Oncol. 1990 Dec;19(4):297–305. doi: 10.1016/0167-8140(90)90029-v. [DOI] [PubMed] [Google Scholar]
  14. Miller B. E., Miller F. R., Heppner G. H. Factors affecting growth and drug sensitivity of mouse mammary tumor lines in collagen gel cultures. Cancer Res. 1985 Sep;45(9):4200–4205. [PubMed] [Google Scholar]
  15. Mueller-Klieser W. Multicellular spheroids. A review on cellular aggregates in cancer research. J Cancer Res Clin Oncol. 1987;113(2):101–122. doi: 10.1007/BF00391431. [DOI] [PubMed] [Google Scholar]
  16. Olive P. L., Durand R. E. Effect of intercellular contact on DNA conformation, radiation-induced DNA damage, and mutation in Chinese hamster V79 cells. Radiat Res. 1985 Jan;101(1):94–101. [PubMed] [Google Scholar]
  17. Rofstad E. K., Wahl A., Davies C. de L., Brustad T. Growth characteristics of human melanoma multicellular spheroids in liquid-overlay culture: comparisons with the parent tumour xenografts. Cell Tissue Kinet. 1986 Mar;19(2):205–216. doi: 10.1111/j.1365-2184.1986.tb00731.x. [DOI] [PubMed] [Google Scholar]
  18. Sutherland R. M. Cell and environment interactions in tumor microregions: the multicell spheroid model. Science. 1988 Apr 8;240(4849):177–184. doi: 10.1126/science.2451290. [DOI] [PubMed] [Google Scholar]
  19. Sutherland R. M., Eddy H. A., Bareham B., Reich K., Vanantwerp D. Resistance to adriamycin in multicellular spheroids. Int J Radiat Oncol Biol Phys. 1979 Aug;5(8):1225–1230. doi: 10.1016/0360-3016(79)90643-6. [DOI] [PubMed] [Google Scholar]
  20. Teicher B. A., Herman T. S., Holden S. A., Wang Y. Y., Pfeffer M. R., Crawford J. W., Frei E., 3rd Tumor resistance to alkylating agents conferred by mechanisms operative only in vivo. Science. 1990 Mar 23;247(4949 Pt 1):1457–1461. doi: 10.1126/science.247.4949.1457. [DOI] [PubMed] [Google Scholar]
  21. Teicher B. A., Holden S. A., Jacobs J. L. Approaches to defining the mechanism of enhancement by Fluosol-DA 20% with carbogen of melphalan antitumor activity. Cancer Res. 1987 Jan 15;47(2):513–518. [PubMed] [Google Scholar]
  22. Theodorescu D., Sheehan C., Kerbel R. S. TGF-beta gene expression depends on tissue architecture. In Vitro Cell Dev Biol. 1993 Feb;29A(2):105–108. doi: 10.1007/BF02630937. [DOI] [PubMed] [Google Scholar]
  23. Wibe E. Resistance to vincristine of human cells grown as multicellular spheroids. Br J Cancer. 1980 Dec;42(6):937–941. doi: 10.1038/bjc.1980.344. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES