Skip to main content
. 2015 Oct 29;3:e1360. doi: 10.7717/peerj.1360

Table 1. Methods for calling differentially expressed genes in RNA-seq data analysis.

Total citations were based on Google Scholar search result as of 22 September 2015, and normalized by number of years since formal publication. The methods were ranked according to their citations per year.

Method Total citations Citations per year Reference
DESeq* 2,987 597 Anders & Huber (2010)
edgeR* 2,260 452 Robinson, McCarthy & Smyth (2010)
Cuffdiff2 517 258 Trapnell et al. (2013)
DESeq2* 209 209 Love, Huber & Anders (2014)
voom* 143 143 Law et al. (2014)
DEGseq 592 118 Wang et al. (2010)
NOISeq*,a,b 324 81 Tarazona et al. (2011)
baySeq 310 62 Hardcastle & Kelly (2010)
SAMSeqb 114 57 Li & Tibshirani (2013)
EBSeq 107 53 Leng et al. (2013)
PoissonSeq 99 33 Li et al. (2012)
BitSeq 70 23 Glaus, Honkela & Rattray (2012)
DSS 46 23 Wu, Wang & Wu (2013)
TSPM 70 17 Auer & Doerge (2011)
GPseq 86 17 Srivastava & Chen (2010)
NBPSeq 65 16 Di et al. (2011)
QuasiSeq 47 16 Lund et al. (2012)
GFOLD*,a 44 15 Feng et al. (2012)
ShrinkSeq 30 15 Van De Wiel et al. (2013)
NPEBseqb 14 7 Bi & Davuluri (2013)
ASC*,a 32 6 Wu et al. (2010)
BADGE 2 1 Gu et al. (2014)

Notes.

*

Methods included in the present study.

a

Methods initially developed to analyze unreplicated RNA-seq data sets.

b

Non-parametric method.

Programming language: C/C+ + for GFOLD, Cuffdiff2 and BitSeq; Matlab for BADGE; R for the rest.