Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Apr 15;90(8):3578–3582. doi: 10.1073/pnas.90.8.3578

Bacteriorhodopsin expressed in Schizosaccharomyces pombe pumps protons through the plasma membrane.

V Hildebrandt 1, K Fendler 1, J Heberle 1, A Hoffmann 1, E Bamberg 1, G Büldt 1
PMCID: PMC46344  PMID: 8386375

Abstract

Bacterioopsin (bO) from Halobacterium salinarium ("Halobacterium halobium") has been functionally expressed in a heterologous system, the fission yeast Schizosaccharomyces pombe. Regeneration of bO to bacteriorhodopsin (bR) in S. pombe has been achieved in vivo by addition of the chromophore retinal to the culture medium, as shown for a retinal-negative mutant of H. salinarium (JW5). Western blot analysis revealed that bR is more stable than bO against proteolysis in fission yeast and also in JW5. The light-driven proton pump is expressed in the eukaryotic organism and incorporated into the plasma membrane. Illumination of intact yeast cells leads to acidification of the external medium due to the translocation of H+ from inside to outside of the cell, indicating the same orientation of bR in the yeast plasma membrane as in H. salinarium. The kinetics of proton release into the water phase was observed with the optical pH indicator pyranine. Time-resolved absorbance changes of isolated plasma membrane measured by flash spectroscopy showed rise and decay of the M intermediate during the photocycle similar to those in the homologous system. Photocurrents and photovoltages were recorded with yeast plasma membrane attached to a planar lipid membrane and to a polytetrafluoroethylene (Teflon) film, respectively. Stationary currents measured in the presence of a protonophore showed continuous pumping activity of bR. The action spectrum of the photocurrent and the kinetics of the photovoltage were analyzed and compared with signals obtained from purple membranes. From all these different investigations we conclude that the integral membrane protein bR is correctly folded in vivo into the cytoplasmic membrane of the fission yeast S. pombe.

Full text

PDF
3578

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bogomolni R. A., Baker R. A., Lozier R. H., Stoeckenius W. Light-driven proton translocations in Halobacterium halobium. Biochim Biophys Acta. 1976 Jul 9;440(1):68–88. doi: 10.1016/0005-2728(76)90114-6. [DOI] [PubMed] [Google Scholar]
  2. Dunn R. J., Hackett N. R., McCoy J. M., Chao B. H., Kimura K., Khorana H. G. Structure-function studies on bacteriorhodopsin. I. Expression of the bacterio-opsin gene in Escherichia coli. J Biol Chem. 1987 Jul 5;262(19):9246–9254. [PubMed] [Google Scholar]
  3. Ferrando E., Schweiger U., Oesterhelt D. Homologous bacterio-opsin-encoding gene expression via site-specific vector integration. Gene. 1993 Mar 15;125(1):41–47. doi: 10.1016/0378-1119(93)90743-m. [DOI] [PubMed] [Google Scholar]
  4. Fimmel S., Choli T., Dencher N. A., Büldt G., Wittmann-Liebold B. Topography of surface-exposed amino acids in the membrane protein bacteriorhodopsin determined by proteolysis and micro-sequencing. Biochim Biophys Acta. 1989 Jan 30;978(2):231–240. doi: 10.1016/0005-2736(89)90120-x. [DOI] [PubMed] [Google Scholar]
  5. Gerber G. E., Anderegg R. J., Herlihy W. C., Gray C. P., Biemann K., Khorana H. G. Partial primary structure of bacteriorhodopsin: sequencing methods for membrane proteins. Proc Natl Acad Sci U S A. 1979 Jan;76(1):227–231. doi: 10.1073/pnas.76.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Grzesiek S., Dencher N. A. Monomeric and aggregated bacteriorhodopsin: Single-turnover proton transport stoichiometry and photochemistry. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9509–9513. doi: 10.1073/pnas.85.24.9509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hartmann R., Oesterhelt D. Bacteriorhodopsin-mediated photophosphorylation in Halobacterium halobium. Eur J Biochem. 1977 Jul 15;77(2):325–335. doi: 10.1111/j.1432-1033.1977.tb11671.x. [DOI] [PubMed] [Google Scholar]
  8. Heberle J., Dencher N. A. Bacteriorhodopsin in ice. Accelerated proton transfer from the purple membrane surface. FEBS Lett. 1990 Dec 17;277(1-2):277–280. doi: 10.1016/0014-5793(90)80864-f. [DOI] [PubMed] [Google Scholar]
  9. Heberle J., Dencher N. A. Surface-bound optical probes monitor protein translocation and surface potential changes during the bacteriorhodopsin photocycle. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5996–6000. doi: 10.1073/pnas.89.13.5996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hildebrandt V., Ramezani-Rad M., Swida U., Wrede P., Grzesiek S., Primke M., Büldt G. Genetic transfer of the pigment bacteriorhodopsin into the eukaryote Schizosaccharomyces pombe. FEBS Lett. 1989 Jan 30;243(2):137–140. doi: 10.1016/0014-5793(89)80115-2. [DOI] [PubMed] [Google Scholar]
  11. Holz M., Lindau M., Heyn M. P. Distributed kinetics of the charge movements in bacteriorhodopsin: evidence for conformational substates. Biophys J. 1988 Apr;53(4):623–633. doi: 10.1016/S0006-3495(88)83141-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Karnik S. S., Nassal M., Doi T., Jay E., Sgaramella V., Khorana H. G. Structure-function studies on bacteriorhodopsin. II. Improved expression of the bacterio-opsin gene in Escherichia coli. J Biol Chem. 1987 Jul 5;262(19):9255–9263. [PubMed] [Google Scholar]
  13. Karnik S., Doi T., Molday R., Khorana H. G. Expression of the archaebacterial bacterio-opsin gene with and without signal sequences in Escherichia coli: the expressed proteins are located in the membrane but bind retinal poorly. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8955–8959. doi: 10.1073/pnas.87.22.8955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Krebs M. P., Hauss T., Heyn M. P., RajBhandary U. L., Khorana H. G. Expression of the bacterioopsin gene in Halobacterium halobium using a multicopy plasmid. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):859–863. doi: 10.1073/pnas.88.3.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lam W. L., Doolittle W. F. Shuttle vectors for the archaebacterium Halobacterium volcanii. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5478–5482. doi: 10.1073/pnas.86.14.5478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Michel H., Oesterhelt D. Light-induced changes of the pH gradient and the membrane potential in H. halobium. FEBS Lett. 1976 Jun 1;65(2):175–178. doi: 10.1016/0014-5793(76)80473-5. [DOI] [PubMed] [Google Scholar]
  17. Ni B. F., Chang M., Duschl A., Lanyi J., Needleman R. An efficient system for the synthesis of bacteriorhodopsin in Halobacterium halobium. Gene. 1990 May 31;90(1):169–172. doi: 10.1016/0378-1119(90)90456-2. [DOI] [PubMed] [Google Scholar]
  18. Oesterhelt D., Stoeckenius W. Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol. 1974;31:667–678. doi: 10.1016/0076-6879(74)31072-5. [DOI] [PubMed] [Google Scholar]
  19. Rayfield G. W. Events in proton pumping by bacteriorhodopsin. Biophys J. 1983 Feb;41(2):109–117. doi: 10.1016/S0006-3495(83)84413-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shand R. F., Miercke L. J., Mitra A. K., Fong S. K., Stroud R. M., Betlach M. C. Wild-type and mutant bacterioopsins D85N, D96N, and R82Q: high-level expression in Escherichia coli. Biochemistry. 1991 Mar 26;30(12):3082–3088. doi: 10.1021/bi00226a015. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES