Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Apr 15;90(8):3641–3644. doi: 10.1073/pnas.90.8.3641

Molecular characterization of a structural epitope that is largely conserved among severe isolates of a plant virus.

H R Pappu 1, S S Pappu 1, K L Manjunath 1, R F Lee 1, C L Niblett 1
PMCID: PMC46357  PMID: 7682715

Abstract

Direct molecular evidence was obtained for the critical role of a single amino acid residue in a structural epitope distinguished by the monoclonal antibody MCA-13, which reacts selectively with severe isolates of citrus tristeza virus (CTV). Different CTV isolates cause a wide range of symptoms in the diverse citrus species they affect. Severe symptoms include decline, stem pitting, and seedling yellows. Plants infected by mild isolates are essentially symptomless. The monoclonal antibody MCA-13, which discriminates severe isolates from mild isolates of the virus, was used to map its epitope on the coat protein of CTV. A diverse group of coat protein genes of geographically and biologically distinct CTV isolates which are either MCA-13-reactive or MCA-13-nonreactive was cloned and sequenced. A series of mutant coat protein genes was constructed through oligonucleotide-directed, site-specific mutagenesis. The reactivity of the wild-type and mutant coat proteins expressed in Escherichia coli was evaluated by Western blotting using MCA-13 and polyclonal antibody prepared to CTV-coat protein. A single nucleotide alteration resulting in a Phe-->Tyr mutation at position 124 of the coat protein abolished the MCA-13 reactivity of a severe isolate, whereas a Tyr-->Phe mutation at the same site conferred MCA-13 reactivity on the coat protein of a previously nonreactive mild isolate of CTV.

Full text

PDF
3641

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander H., Alexander S., Getzoff E. D., Tainer J. A., Geysen H. M., Lerner R. A. Altering the antigenicity of proteins. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3352–3356. doi: 10.1073/pnas.89.8.3352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altschuh D., Al Moudallal Z., Briand J. P., Van Regenmortel M. H. Immunochemical studies of tobacco mosaic virus--VI. Attempts to localize viral epitopes with monoclonal antibodies. Mol Immunol. 1985 Mar;22(3):329–337. doi: 10.1016/0161-5890(85)90169-5. [DOI] [PubMed] [Google Scholar]
  3. Commandeur U., Koenig R., Lesemann D. E., Torrance L., Burgermeister W., Liu Y., Schots A., Alric M., Grassi G. Epitope mapping on fragments of beet necrotic yellow vein virus coat protein. J Gen Virol. 1992 Mar;73(Pt 3):695–700. doi: 10.1099/0022-1317-73-3-695. [DOI] [PubMed] [Google Scholar]
  4. Dawson W. O. Tobamovirus-plant interactions. Virology. 1992 Feb;186(2):359–367. doi: 10.1016/0042-6822(92)90001-6. [DOI] [PubMed] [Google Scholar]
  5. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dore I., Weiss E., Altschuh D., Van Regenmortel M. H. Visualization by electron microscopy of the location of tobacco mosaic virus epitopes reacting with monoclonal antibodies in enzyme immunoassay. Virology. 1988 Feb;162(2):279–289. doi: 10.1016/0042-6822(88)90467-9. [DOI] [PubMed] [Google Scholar]
  7. Jordan R., Hammond J. Comparison and differentiation of potyvirus isolates and identification of strain-, virus-, subgroup-specific and potyvirus group-common epitopes using monoclonal antibodies. J Gen Virol. 1991 Jan;72(Pt 1):25–36. doi: 10.1099/0022-1317-72-1-25. [DOI] [PubMed] [Google Scholar]
  8. Koenig R., Commandeur U., Lesemann D. E., Burgermeister W., Torrance L., Grassi G., Alric M., Kallerhoff J., Schots A. Antigenic analysis of the coat protein of beet necrotic yellow vein virus by means of monoclonal antibodies. J Gen Virol. 1990 Oct;71(Pt 10):2229–2232. doi: 10.1099/0022-1317-71-10-2229. [DOI] [PubMed] [Google Scholar]
  9. Kotwal G. J., Baroudy B. M., Kuramoto I. K., McDonald F. F., Schiff G. M., Holland P. V., Zeldis J. B. Detection of acute hepatitis C virus infection by ELISA using a synthetic peptide comprising a structural epitope. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4486–4489. doi: 10.1073/pnas.89.10.4486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Portner A., Scroggs R. A., Naeve C. W. The fusion glycoprotein of Sendai virus: sequence analysis of an epitope involved in fusion and virus neutralization. Virology. 1987 Apr;157(2):556–559. doi: 10.1016/0042-6822(87)90301-1. [DOI] [PubMed] [Google Scholar]
  13. Rhoads D. D., Roufa D. J. Emetine resistance of Chinese hamster cells: structures of wild-type and mutant ribosomal protein S14 mRNAs. Mol Cell Biol. 1985 Jul;5(7):1655–1659. doi: 10.1128/mcb.5.7.1655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rizzo T. M., Gray S. M. Localization of a surface domain of the capsid protein of barley yellow dwarf virus. Virology. 1992 Jan;186(1):300–302. doi: 10.1016/0042-6822(92)90085-4. [DOI] [PubMed] [Google Scholar]
  15. Sekiya M. E., Lawrence S. D., McCaffery M., Cline K. Molecular cloning and nucleotide sequencing of the coat protein gene of citrus tristeza virus. J Gen Virol. 1991 May;72(Pt 5):1013–1020. doi: 10.1099/0022-1317-72-5-1013. [DOI] [PubMed] [Google Scholar]
  16. Shintaku M. H., Zhang L., Palukaitis P. A single amino acid substitution in the coat protein of cucumber mosaic virus induces chlorosis in tobacco. Plant Cell. 1992 Jul;4(7):751–757. doi: 10.1105/tpc.4.7.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Vieira J., Messing J. Production of single-stranded plasmid DNA. Methods Enzymol. 1987;153:3–11. doi: 10.1016/0076-6879(87)53044-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES