Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 May 1;90(9):3885–3888. doi: 10.1073/pnas.90.9.3885

A single protein catalyzes both N-deacetylation and N-sulfation during the biosynthesis of heparan sulfate.

Z Wei 1, S J Swiedler 1, M Ishihara 1, A Orellana 1, C B Hirschberg 1
PMCID: PMC46410  PMID: 8483907

Abstract

Heparan sulfate is a highly sulfated carbohydrate polymer that binds to and modulates the activities of numerous proteins. The formation of these protein-binding domains in heparan sulfate is dependent on a series of biosynthetic reactions that modify the polysaccharide backbone; the initiating and rate-limiting steps of this process are the N-deacetylation and N-sulfation of N-acetylglucosamine residues in the polymer. We now report that in the rat liver, biosynthesis of heparan sulfate utilizes a single protein that possesses both N-deacetylase and N-sulfotransferase activities. This was accomplished by demonstrating that both activities resided in a purified soluble fusion protein containing the Golgi-lumenal portion of the enzyme. We propose that this protein be renamed the rat liver Golgi heparan sulfate N-deacetylase/N-sulfotransferase.

Full text

PDF
3885

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aruffo A., Seed B. Molecular cloning of a CD28 cDNA by a high-efficiency COS cell expression system. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8573–8577. doi: 10.1073/pnas.84.23.8573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bame K. J., Lidholt K., Lindahl U., Esko J. D. Biosynthesis of heparan sulfate. Coordination of polymer-modification reactions in a Chinese hamster ovary cell mutant defective in N-sulfotransferase. J Biol Chem. 1991 Jun 5;266(16):10287–10293. [PubMed] [Google Scholar]
  3. Bame K. J., Reddy R. V., Esko J. D. Coupling of N-deacetylation and N-sulfation in a Chinese hamster ovary cell mutant defective in heparan sulfate N-sulfotransferase. J Biol Chem. 1991 Jul 5;266(19):12461–12468. [PubMed] [Google Scholar]
  4. Brandan E., Hirschberg C. B. Purification of rat liver N-heparan-sulfate sulfotransferase. J Biol Chem. 1988 Feb 15;263(5):2417–2422. [PubMed] [Google Scholar]
  5. Coleman P. F., Suttle D. P., Stark G. R. Purification from hamster cells of the multifunctional protein that initiates de novo synthesis of pyrimidine nucleotides. J Biol Chem. 1977 Sep 25;252(18):6379–6385. [PubMed] [Google Scholar]
  6. Daubner S. C., Schrimsher J. L., Schendel F. J., Young M., Henikoff S., Patterson D., Stubbe J., Benkovic S. J. A multifunctional protein possessing glycinamide ribonucleotide synthetase, glycinamide ribonucleotide transformylase, and aminoimidazole ribonucleotide synthetase activities in de novo purine biosynthesis. Biochemistry. 1985 Dec 3;24(25):7059–7062. doi: 10.1021/bi00346a006. [DOI] [PubMed] [Google Scholar]
  7. Floyd E. E., Jones M. E. Isolation and characterization of the orotidine 5'-monophosphate decarboxylase domain of the multifunctional protein uridine 5'-monophosphate synthase. J Biol Chem. 1985 Aug 5;260(16):9443–9451. [PubMed] [Google Scholar]
  8. Gallagher J. T., Lyon M., Steward W. P. Structure and function of heparan sulphate proteoglycans. Biochem J. 1986 Jun 1;236(2):313–325. doi: 10.1042/bj2360313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Habuchi H., Suzuki S., Saito T., Tamura T., Harada T., Yoshida K., Kimata K. Structure of a heparan sulphate oligosaccharide that binds to basic fibroblast growth factor. Biochem J. 1992 Aug 1;285(Pt 3):805–813. doi: 10.1042/bj2850805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hashimoto Y., Orellana A., Gil G., Hirschberg C. B. Molecular cloning and expression of rat liver N-heparan sulfate sulfotransferase. J Biol Chem. 1992 Aug 5;267(22):15744–15750. [PubMed] [Google Scholar]
  11. Ishihara M., Guo Y., Swiedler S. J. Selective impairment of the synthesis of basic fibroblast growth factor binding domains of heparan sulphate in a COS cell mutant defective in N-sulphotransferase. Glycobiology. 1993 Feb;3(1):83–88. doi: 10.1093/glycob/3.1.83. [DOI] [PubMed] [Google Scholar]
  12. Ishihara M., Kiefer M. C., Barr P. J., Guo Y., Swiedler S. J. Selection of COS cell mutants defective in the biosynthesis of heparan sulfate proteoglycan. Anal Biochem. 1992 Nov 1;206(2):400–407. doi: 10.1016/0003-2697(92)90385-k. [DOI] [PubMed] [Google Scholar]
  13. Ishihara M., Tyrrell D. J., Kiefer M. C., Barr P. J., Swiedler S. J. A cell-based assay for evaluating the interaction of heparin-like molecules and basic fibroblast growth factor. Anal Biochem. 1992 May 1;202(2):310–315. doi: 10.1016/0003-2697(92)90111-j. [DOI] [PubMed] [Google Scholar]
  14. Kjellén L., Lindahl U. Proteoglycans: structures and interactions. Annu Rev Biochem. 1991;60:443–475. doi: 10.1146/annurev.bi.60.070191.002303. [DOI] [PubMed] [Google Scholar]
  15. Kjellén L., Pettersson I., Unger E., Lindahl U. Two enzymes in one: N-deacetylation and N-sulfation in heparin biosynthesis are catalyzed by the same protein. Adv Exp Med Biol. 1992;313:107–111. doi: 10.1007/978-1-4899-2444-5_11. [DOI] [PubMed] [Google Scholar]
  16. Lee L., Kelly R. E., Pastra-Landis S. C., Evans D. R. Oligomeric structure of the multifunctional protein CAD that initiates pyrimidine biosynthesis in mammalian cells. Proc Natl Acad Sci U S A. 1985 Oct;82(20):6802–6806. doi: 10.1073/pnas.82.20.6802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pettersson I., Kusche M., Unger E., Wlad H., Nylund L., Lindahl U., Kjellén L. Biosynthesis of heparin. Purification of a 110-kDa mouse mastocytoma protein required for both glucosaminyl N-deacetylation and N-sulfation. J Biol Chem. 1991 May 5;266(13):8044–8049. [PubMed] [Google Scholar]
  18. Riesenfeld J., Hök M., Lindahl U. Biosynthesis of heparin. Assay and properties of the microsomal N-acetyl-D-glucosaminyl N-deacetylase. J Biol Chem. 1980 Feb 10;255(3):922–928. [PubMed] [Google Scholar]
  19. Riesenfeld J., Hök M., Lindahl U. Biosynthesis of heparin. Concerted action of early polymer-modification reactions. J Biol Chem. 1982 Jan 10;257(1):421–425. [PubMed] [Google Scholar]
  20. Sanchez-Lopez R., Nicholson R., Gesnel M. C., Matrisian L. M., Breathnach R. Structure-function relationships in the collagenase family member transin. J Biol Chem. 1988 Aug 25;263(24):11892–11899. [PubMed] [Google Scholar]
  21. Seed B., Aruffo A. Molecular cloning of the CD2 antigen, the T-cell erythrocyte receptor, by a rapid immunoselection procedure. Proc Natl Acad Sci U S A. 1987 May;84(10):3365–3369. doi: 10.1073/pnas.84.10.3365. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES