Skip to main content
Thorax logoLink to Thorax
. 1993 May;48(5):474–480. doi: 10.1136/thx.48.5.474

Experimental studies to assess the potential of photodynamic therapy for the treatment of bronchial carcinomas.

S G Smith 1, J Bedwell 1, A J MacRobert 1, M H Griffiths 1, S G Bown 1, M R Hetzel 1
PMCID: PMC464496  PMID: 8322231

Abstract

BACKGROUND--Photodynamic therapy (PDT) is a technique for producing localised tissue necrosis with light after prior administration of a photosensitising drug. There is some selectivity of uptake of photosensitisers in malignant tissue, although this is difficult to exploit. Full thickness necrosis in normal and neoplastic colon heals without perforation because of a lack of effect on collagen, making local cure a possibility. The experiments described here aim to establish whether these conclusions are also valid for bronchial tumours. METHODS--In pharmacokinetic studies normal rats were given 5 mg/kg of the photosensitiser aluminium sulphonated phthalocyanine (A1SPc) intravenously and killed up to one month later. The distribution of A1SPc in the trachea was measured by chemical extraction and fluorescence microscopy. In subsequent experiments sensitised animals were treated with light delivered to the tracheal mucosa through a thin flexible fibre and the resultant lesions were studied for their size, mechanical strength, and healing. A series of resected human bronchial carcinomas were examined histologically for their collagen content. RESULTS--The tracheal concentration of A1SPc in normal rats was maximum 1-20 hours after administration. Fluorescence microscopy revealed that most was in the perichondrium and submucosal stroma, with little in the cartilage. Light exposure showed necrosis of the soft tissues which healed by regeneration, but no effect on cartilage and no reduction in the mechanical strength of the trachea at any stage. Histological examination of resected human bronchial carcinomas showed more collagen in the tumour areas than would be found in normal regions. CONCLUSIONS--PDT leads to necrosis of the soft tissues of the normal trachea but there is complete healing by regeneration, no risk of perforation (due to collagen preservation), and no effect on cartilage. Human bronchial carcinomas apparently contain more collagen than normal bronchi which may give protection against perforation following necrosis induced by PDT. PDT may have a role in eradicating small volumes of tumour tissue in situ and could be valuable for treating (1) small carcinomas in patients unfit for resection, (2) tumour remaining after surgical resection, (3) stump recurrences, or (4) to prolong palliation of tumours after debulking with the NdYAG laser.

Full text

PDF
474

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrez M. V., Wharen R. E., Jr, Anderson R. E., Laws E. R., Jr, Ilstrup D. M., Cortese D. A., Shorter R. G., Lieber M. M. Hematoporphyrin derivative: quantitative uptake in dimethylhydrazine-induced murine colorectal carcinoma. J Surg Oncol. 1983 Nov;24(3):173–176. doi: 10.1002/jso.2930240305. [DOI] [PubMed] [Google Scholar]
  2. Barr H., Chatlani P., Tralau C. J., MacRobert A. J., Boulos P. B., Bown S. G. Local eradication of rat colon cancer with photodynamic therapy: correlation of distribution of photosensitiser with biological effects in normal and tumour tissue. Gut. 1991 May;32(5):517–523. doi: 10.1136/gut.32.5.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barr H., Tralau C. J., Boulos P. B., MacRobert A. J., Krasner N., Phillips D., Bown S. G. Selective necrosis in dimethylhydrazine-induced rat colon tumors using phthalocyanine photodynamic therapy. Gastroenterology. 1990 Jun;98(6):1532–1537. doi: 10.1016/0016-5085(90)91086-l. [DOI] [PubMed] [Google Scholar]
  4. Barr H., Tralau C. J., Boulos P. B., MacRobert A. J., Tilly R., Bown S. G. The contrasting mechanisms of colonic collagen damage between photodynamic therapy and thermal injury. Photochem Photobiol. 1987 Nov;46(5):795–800. doi: 10.1111/j.1751-1097.1987.tb04850.x. [DOI] [PubMed] [Google Scholar]
  5. Barr H., Tralau C. J., MacRobert A. J., Krasner N., Boulos P. B., Clark C. G., Bown S. G. Photodynamic therapy in the normal rat colon with phthalocyanine sensitisation. Br J Cancer. 1987 Aug;56(2):111–118. doi: 10.1038/bjc.1987.166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bedwell J., MacRobert A. J., Phillips D., Bown S. G. Fluorescence distribution and photodynamic effect of ALA-induced PP IX in the DMH rat colonic tumour model. Br J Cancer. 1992 Jun;65(6):818–824. doi: 10.1038/bjc.1992.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bown S. G. Photodynamic therapy to scientists and clinicians--one world or two? J Photochem Photobiol B. 1990 Jun;6(1-2):1–12. doi: 10.1016/1011-1344(90)85069-9. [DOI] [PubMed] [Google Scholar]
  8. Bown S. G., Tralau C. J., Smith P. D., Akdemir D., Wieman T. J. Photodynamic therapy with porphyrin and phthalocyanine sensitisation: quantitative studies in normal rat liver. Br J Cancer. 1986 Jul;54(1):43–52. doi: 10.1038/bjc.1986.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chan W. S., Marshall J. F., Hart I. R. Effect of tumour location on selective uptake and retention of phthalocyanines. Cancer Lett. 1989 Jan;44(1):73–77. doi: 10.1016/0304-3835(89)90111-0. [DOI] [PubMed] [Google Scholar]
  10. Chan W. S., Marshall J. F., Lam G. Y., Hart I. R. Tissue uptake, distribution, and potency of the photoactivatable dye chloroaluminum sulfonated phthalocyanine in mice bearing transplantable tumors. Cancer Res. 1988 Jun 1;48(11):3040–3044. [PubMed] [Google Scholar]
  11. Chan W. S., Svensen R., Phillips D., Hart I. R. Cell uptake, distribution and response to aluminium chloro sulphonated phthalocyanine, a potential anti-tumour photosensitizer. Br J Cancer. 1986 Feb;53(2):255–263. doi: 10.1038/bjc.1986.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cortese D. A., Kinsey J. H. Endoscopic management of lung cancer with hematoporphyrin derivative phototherapy. Mayo Clin Proc. 1982 Sep;57(9):543–547. [PubMed] [Google Scholar]
  13. Hayata Y., Kato H., Konaka C., Amemiya R., Ono J., Ogawa I., Kinoshita K., Sakai H., Takahashi H. Photoradiation therapy with hematoporphyrin derivative in early and stage 1 lung cancer. Chest. 1984 Aug;86(2):169–177. doi: 10.1378/chest.86.2.169. [DOI] [PubMed] [Google Scholar]
  14. Hayata Y., Kato H., Konaka C., Hayashi N., Tahara M., Saito T., Ono J. Fiberoptic bronchoscopic photoradiation in experimentally induced canine lung cancer. Cancer. 1983 Jan 1;51(1):50–56. doi: 10.1002/1097-0142(19830101)51:1<50::aid-cncr2820510113>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
  15. Hayata Y., Kato H., Konaka C., Ono J., Matsushima Y., Yoneyama K., Nishimiya K. Fiberoptic bronchoscopic laser photoradiation for tumor localization in lung cancer. Chest. 1982 Jul;82(1):10–14. doi: 10.1378/chest.82.1.10. [DOI] [PubMed] [Google Scholar]
  16. Henderson B. W., Waldow S. M., Mang T. S., Potter W. R., Malone P. B., Dougherty T. J. Tumor destruction and kinetics of tumor cell death in two experimental mouse tumors following photodynamic therapy. Cancer Res. 1985 Feb;45(2):572–576. [PubMed] [Google Scholar]
  17. Hetzel M. R., Smith S. G. Endoscopic palliation of tracheobronchial malignancies. Thorax. 1991 May;46(5):325–333. doi: 10.1136/thx.46.5.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pope A. J., Bown S. G. The morphological and functional changes in rat bladder following photodynamic therapy with phthalocyanine photosensitization. J Urol. 1991 May;145(5):1064–1070. doi: 10.1016/s0022-5347(17)38536-1. [DOI] [PubMed] [Google Scholar]
  19. Pope A. J., MacRobert A. J., Phillips D., Bown S. G. The detection of phthalocyanine fluorescence in normal rat bladder wall using sensitive digital imaging microscopy. Br J Cancer. 1991 Nov;64(5):875–879. doi: 10.1038/bjc.1991.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Spikes J. D. Phthalocyanines as photosensitizers in biological systems and for the photodynamic therapy of tumors. Photochem Photobiol. 1986 Jun;43(6):691–699. doi: 10.1111/j.1751-1097.1986.tb05648.x. [DOI] [PubMed] [Google Scholar]
  21. Thomas R. J., Abbott M., Bhathal P. S., St John D. J., Morstyn G. High-dose photoirradiation of esophageal cancer. Ann Surg. 1987 Aug;206(2):193–199. doi: 10.1097/00000658-198708000-00012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tralau C. J., Barr H., Sandeman D. R., Barton T., Lewin M. R., Bown S. G. Aluminum sulfonated phthalocyanine distribution in rodent tumors of the colon, brain and pancreas. Photochem Photobiol. 1987 Nov;46(5):777–781. doi: 10.1111/j.1751-1097.1987.tb04847.x. [DOI] [PubMed] [Google Scholar]
  23. Tralau C. J., MacRobert A. J., Coleridge-Smith P. D., Barr H., Bown S. G. Photodynamic therapy with phthalocyanine sensitisation: quantitative studies in a transplantable rat fibrosarcoma. Br J Cancer. 1987 Apr;55(4):389–395. doi: 10.1038/bjc.1987.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tralau C. J., Young A. R., Walker N. P., Vernon D. I., MacRobert A. J., Brown S. B., Bown S. G. Mouse skin photosensitivity with dihaematoporphyrin ether (DHE) and aluminium sulphonated phthalocyanine (AlSPc): a comparative study. Photochem Photobiol. 1989 Mar;49(3):305–312. doi: 10.1111/j.1751-1097.1989.tb04111.x. [DOI] [PubMed] [Google Scholar]
  25. Weishaupt K. R., Gomer C. J., Dougherty T. J. Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor. Cancer Res. 1976 Jul;36(7 Pt 1):2326–2329. [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES