Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Oct 14;71(Pt 11):1319–1321. doi: 10.1107/S205698901501885X

Crystal structure of (E)-2-amino-4-methyl­sulfanyl-6-oxo-1-{[(thiophen-2-yl)­methyl­idene]­amino}-1,6-di­hydro­pyrimidine-5-carbo­nitrile

Galal H Elgemeie a, Ali M Salah a, Reham A Mohamed a, Peter G Jones b,*
PMCID: PMC4644996  PMID: 26594500

In the title compound 1-thio­phen-2-yl­methyl­ene­amino­pyrimidine derivative, the pyrimidine and thienyl rings are inclined to one another by 42.72 (5)°. In the crystal, mol­ecules are linked by N–H⋯Nnitrile and N–H⋯O=C hydrogen bonds, forming chains parallel to the b axis.

Keywords: crystal structure, pyrimidine, thien­yl, N—H⋯N and N—H⋯O hydrogen bonds.

Abstract

The title compound, C11H9N5OS2, a 1-thio­phen-2-yl­methyl­ene­amino­pyrimidine derivative, displays an essentially planar C—NH2 group. The conformation across the N=C bond linking the pyrimidine and thienyl groups is E. The pyrimidine and thienyl ring systems subtend an inter-planar angle of 42.72 (5)°. In the crystal, mol­ecules are linked by N–H⋯Nnitrile and N–H⋯O=C hydrogen bonds, forming chains parallel to the b axis.

Chemical context  

Pyrimidines are well known for their biological activities as anti­metabolic agents and have attracted much attention from the standpoint of pharmaceutical chemistry. Many drugs, such as 5-fluoro­uracil, containing a pyrimidine moiety have been developed and used as anti­cancer agents. It is difficult to find a general method for the introduction of specific substituents into the pyrimidine nucleus directly, and thus many synthetic methods have been developed for the construction of pyrimidine rings bearing potential functional groups (Elgemeie & Sood, 2001). As part of our program directed toward the preparation of potential anti­metabolites (Elgemeie & Hussain, 1994), we have recently reported various successful approaches for the syntheses of purine and pyrimidine analogues (Elgemeie, 2003; Elgemeie et al., 2009). Derivatives of these ring systems are inter­esting as anti­metabolic agents in biochemical reactions (Scala et al., 1997).graphic file with name e-71-01319-scheme1.jpg

We report herein on the synthesis and crystal structure of a new 1-thio­phen-2-yl­methyl­ene­amino­pyrimidine derivative, obtained by reaction of dimethyl N-cyano­dithio­imino­carbonate with 1-cyano­acetyl-4-thio­phene­methyl­idene semicarbazide in dioxane containing KOH at room temperature. To the best of our knowledge, this is the first example of this approach to be reported for N-substituted amino­pyrimidine derivatives. The X-ray structure determination was undertaken to establish the nature of the product unambiguously.

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 1. The E conformation across the double bond N2=C10 is confirmed, with a bond length of 1.2879 (14) Å. Both ring systems are, as expected, planar (r.m.s. deviations are 0.017 Å for the pyrimidine and 0.001 Å for the thienyl ring). Atom N2 lies 0.189 (2) Å out of the pyrimidine plane; all other immediate substituent atoms lie effectively in the ring plane. Carbon atom C7 of the thio­methyl group is rotated slightly out of the ring plane, with torsion angle N3—C4—S1—C7 being −6.30 (10)°. The inter-planar angle between the rings is 42.72 (5)°; the relative orientation is influenced by the torsion angles C6—N1—N2—C10 = −51.78 (13), N1—N2—C10—C11 = 174.68 (9) and N2—C10—C11—S12 = 5.22 (15)°. The NH2 group is planar; the nitro­gen atom lies only 0.048 (9) Å out of the plane of its substituents. The intra­molecular contact H041⋯N2 = 2.22 (2) Å may be construed as a hydrogen bond, although the angle at the H atom is necessarily narrow at 108.4 (14) ° (Table 1).

Figure 1.

Figure 1

The mol­ecule structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular hydrogen bond, H042⋯N1, is not shown.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N4H041N2 0.827(18) 2.224(17) 2.6062(13) 108.4(14)
N4H041N5i 0.827(18) 2.513(17) 3.0555(14) 124.2(15)
N4H042O1i 0.823(17) 2.144(17) 2.9414(12) 163.1(15)
C13H13N5ii 0.95 2.49 3.2722(15) 139
C10H10O1iii 0.95 2.35 3.2124(13) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Supra­molecular features  

In the crystal, mol­ecules are connected into chains parallel to the b axis by the two classical hydrogen bonds, H041⋯N5 2.51 (2) Å and H042⋯O1 2.14 (2) Å (Table 1 and Fig. 2), both involving the 21 screw operator −x + 1, y − Inline graphic, −z + Inline graphic. The longer of these two contacts forms part of a three-center system with the intra­molecular contact H041⋯N2 (Table 1). The ‘weak’ hydrogen bond H13⋯N5 of 2.49 Å, formed via the c glide operator x + 1, −y + Inline graphic, z − Inline graphic, connects the chains to form layers parallel to (102) (Table 1 and Fig. 2).

Figure 2.

Figure 2

Crystal packing diagram of the title compound, viewed perpendicular to (102). Classical hydrogen bonds are drawn as thick dashed lines and ‘weak’ hydrogen bonds as thin dashed lines (see Table 1).

Database survey  

A search of the Cambridge Structural Database (Version 5.36, 2014; Groom & Allen, 2014) revealed 42 hits for pyrimidines with the amino and C=O functions located as for the title compound.

Synthesis and crystallization  

Dimethyl N-cyano­dithio­imino­carbonate (0.01 mol) was added to a stirred solution of 1-cyano­acetyl-4-thio­phene­methyl­idenesemicarbazide (0.01 mol) in dry dioxane (50 ml), containing potassium hydroxide (0.01 mol), at room temperature. The solution was stirred overnight at room temperature, after which a colourless solid product was collected by filtration and crystallized from ethanol (m.p. 541–542 K), giving colourless block-like crystals.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH hydrogen atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95–0.98 Å with U iso(H) = 1.5U eq(C) for methyl H atoms and 1.2U eq(C) for other H atoms. The methyl group was refined as an idealized rigid group, allowed to rotate but not to tip.

Table 2. Experimental details.

Crystal data
Chemical formula C11H9N5OS2
M r 291.35
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c () 11.4650(4), 14.7715(4), 7.5924(3)
() 96.397(3)
V (3) 1277.81(8)
Z 4
Radiation type Mo K
(mm1) 0.42
Crystal size (mm) 0.40 0.40 0.12
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013)
T min, T max 0.949, 1.000
No. of measured, independent and observed [I > 2(I)] reflections 40035, 3838, 3400
R int 0.035
(sin /)max (1) 0.719
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.030, 0.078, 1.05
No. of reflections 3838
No. of parameters 181
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.45, 0.28

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97, SHELXL97 and XP in SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S205698901501885X/su5217sup1.cif

e-71-01319-sup1.cif (21.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901501885X/su5217Isup2.hkl

e-71-01319-Isup2.hkl (188.2KB, hkl)

CCDC reference: 1430030

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C11H9N5OS2 F(000) = 600
Mr = 291.35 Dx = 1.514 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yc Cell parameters from 11992 reflections
a = 11.4650 (4) Å θ = 2.8–30.7°
b = 14.7715 (4) Å µ = 0.42 mm1
c = 7.5924 (3) Å T = 100 K
β = 96.397 (3)° Block, colourless
V = 1277.81 (8) Å3 0.40 × 0.40 × 0.12 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur, Eos diffractometer 3838 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3400 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.035
Detector resolution: 16.1419 pixels mm-1 θmax = 30.7°, θmin = 2.3°
ω–scan h = −16→16
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) k = −21→20
Tmin = 0.949, Tmax = 1.000 l = −10→10
40035 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0353P)2 + 0.5986P] where P = (Fo2 + 2Fc2)/3
3838 reflections (Δ/σ)max = 0.001
181 parameters Δρmax = 0.45 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.NH H atoms were refined freely. The methyl was refined as an idealized rigid group allowed to rotate but not tip (AFIX 137). Other H atoms were included using a riding model starting from calculated positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.18882 (2) 0.570453 (19) 0.93852 (4) 0.01607 (8)
N1 0.53629 (8) 0.58971 (6) 0.73366 (12) 0.01132 (17)
C2 0.48455 (9) 0.50790 (7) 0.76239 (14) 0.01123 (19)
N3 0.37941 (8) 0.50061 (6) 0.82064 (12) 0.01267 (18)
C4 0.32601 (9) 0.57730 (7) 0.86044 (14) 0.01173 (19)
C5 0.37518 (9) 0.66299 (7) 0.84526 (14) 0.0122 (2)
C6 0.48602 (9) 0.67272 (7) 0.77860 (14) 0.01108 (19)
C7 0.15734 (11) 0.45152 (8) 0.91405 (16) 0.0186 (2)
H7A 0.1624 0.4334 0.7910 0.028*
H7B 0.0781 0.4395 0.9450 0.028*
H7C 0.2144 0.4169 0.9929 0.028*
C8 0.31807 (10) 0.74448 (7) 0.88764 (15) 0.0147 (2)
O1 0.53764 (7) 0.74475 (5) 0.75918 (11) 0.01462 (16)
N2 0.65393 (8) 0.58528 (6) 0.69401 (13) 0.01224 (18)
N4 0.54197 (9) 0.43358 (6) 0.72510 (14) 0.01410 (18)
H041 0.6097 (16) 0.4387 (12) 0.699 (2) 0.027 (4)*
H042 0.5115 (14) 0.3849 (11) 0.746 (2) 0.020 (4)*
N5 0.27567 (9) 0.81204 (7) 0.92072 (15) 0.0213 (2)
C10 0.67911 (9) 0.64245 (7) 0.57588 (14) 0.0123 (2)
H10 0.6191 0.6792 0.5165 0.015*
C11 0.79798 (9) 0.65073 (7) 0.53371 (14) 0.0124 (2)
S12 0.91097 (2) 0.58149 (2) 0.62072 (4) 0.01827 (8)
C13 1.01057 (10) 0.64133 (9) 0.51488 (16) 0.0190 (2)
H13 1.0919 0.6273 0.5232 0.023*
C14 0.96003 (11) 0.71124 (8) 0.41744 (16) 0.0189 (2)
H14 1.0022 0.7516 0.3505 0.023*
C15 0.83751 (10) 0.71713 (8) 0.42687 (15) 0.0157 (2)
H15 0.7883 0.7616 0.3666 0.019*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01141 (13) 0.01430 (13) 0.02338 (15) −0.00065 (9) 0.00585 (10) −0.00028 (10)
N1 0.0097 (4) 0.0088 (4) 0.0158 (4) 0.0005 (3) 0.0028 (3) −0.0004 (3)
C2 0.0122 (5) 0.0093 (4) 0.0120 (5) −0.0008 (4) 0.0002 (4) −0.0001 (3)
N3 0.0116 (4) 0.0110 (4) 0.0154 (4) −0.0006 (3) 0.0014 (3) −0.0001 (3)
C4 0.0099 (4) 0.0130 (5) 0.0121 (5) −0.0001 (4) 0.0001 (4) 0.0006 (4)
C5 0.0110 (5) 0.0105 (4) 0.0153 (5) 0.0007 (4) 0.0024 (4) −0.0004 (4)
C6 0.0107 (5) 0.0094 (4) 0.0130 (5) 0.0010 (3) 0.0007 (4) −0.0008 (4)
C7 0.0168 (5) 0.0164 (5) 0.0235 (6) −0.0054 (4) 0.0058 (4) −0.0012 (4)
C8 0.0127 (5) 0.0136 (5) 0.0185 (5) −0.0014 (4) 0.0045 (4) 0.0010 (4)
O1 0.0142 (4) 0.0086 (3) 0.0217 (4) −0.0011 (3) 0.0044 (3) −0.0012 (3)
N2 0.0090 (4) 0.0109 (4) 0.0173 (4) 0.0003 (3) 0.0035 (3) −0.0014 (3)
N4 0.0134 (4) 0.0079 (4) 0.0214 (5) −0.0002 (3) 0.0036 (4) −0.0005 (3)
N5 0.0189 (5) 0.0158 (5) 0.0308 (6) 0.0014 (4) 0.0104 (4) −0.0002 (4)
C10 0.0123 (5) 0.0115 (4) 0.0130 (5) 0.0009 (4) 0.0008 (4) −0.0022 (4)
C11 0.0124 (5) 0.0111 (4) 0.0139 (5) 0.0009 (4) 0.0023 (4) −0.0014 (4)
S12 0.01309 (14) 0.01868 (14) 0.02389 (16) 0.00414 (10) 0.00586 (11) 0.00657 (11)
C13 0.0128 (5) 0.0241 (6) 0.0210 (6) −0.0025 (4) 0.0058 (4) −0.0022 (5)
C14 0.0202 (6) 0.0181 (5) 0.0199 (5) −0.0053 (4) 0.0084 (4) −0.0004 (4)
C15 0.0181 (5) 0.0140 (5) 0.0158 (5) 0.0001 (4) 0.0048 (4) 0.0000 (4)

Geometric parameters (Å, º)

S1—C4 1.7446 (11) C11—C15 1.3811 (15)
S1—C7 1.7990 (12) C11—S12 1.7234 (11)
N1—C2 1.3744 (13) S12—C13 1.7133 (12)
N1—C6 1.4127 (13) C13—C14 1.3617 (18)
N1—N2 1.4158 (12) C14—C15 1.4172 (16)
C2—N4 1.3268 (13) C7—H7A 0.9800
C2—N3 1.3337 (14) C7—H7B 0.9800
N3—C4 1.3382 (13) C7—H7C 0.9800
C4—C5 1.3956 (14) N4—H041 0.827 (18)
C5—C8 1.4242 (15) N4—H042 0.823 (17)
C5—C6 1.4265 (14) C10—H10 0.9500
C6—O1 1.2343 (13) C13—H13 0.9500
C8—N5 1.1500 (15) C14—H14 0.9500
N2—C10 1.2879 (14) C15—H15 0.9500
C10—C11 1.4395 (14)
C4—S1—C7 101.52 (5) C10—C11—S12 123.65 (8)
C2—N1—C6 122.00 (9) C13—S12—C11 91.48 (6)
C2—N1—N2 115.55 (8) C14—C13—S12 112.37 (9)
C6—N1—N2 121.03 (8) C13—C14—C15 112.54 (10)
N4—C2—N3 119.49 (10) C11—C15—C14 112.22 (10)
N4—C2—N1 117.42 (10) S1—C7—H7A 109.5
N3—C2—N1 123.07 (9) S1—C7—H7B 109.5
C2—N3—C4 117.37 (9) H7A—C7—H7B 109.5
N3—C4—C5 123.36 (10) S1—C7—H7C 109.5
N3—C4—S1 118.70 (8) H7A—C7—H7C 109.5
C5—C4—S1 117.93 (8) H7B—C7—H7C 109.5
C4—C5—C8 123.21 (10) C2—N4—H041 118.5 (12)
C4—C5—C6 120.31 (9) C2—N4—H042 116.8 (11)
C8—C5—C6 116.44 (9) H041—N4—H042 123.9 (16)
O1—C6—N1 120.35 (9) N2—C10—H10 119.9
O1—C6—C5 125.96 (10) C11—C10—H10 119.9
N1—C6—C5 113.69 (9) C14—C13—H13 123.8
N5—C8—C5 177.44 (12) S12—C13—H13 123.8
C10—N2—N1 114.23 (9) C13—C14—H14 123.7
N2—C10—C11 120.12 (10) C15—C14—H14 123.7
C15—C11—C10 124.88 (10) C11—C15—H15 123.9
C15—C11—S12 111.39 (8) C14—C15—H15 123.9
C6—N1—C2—N4 −176.23 (10) N2—N1—C6—C5 −169.29 (9)
N2—N1—C2—N4 −9.70 (14) C4—C5—C6—O1 179.88 (11)
C6—N1—C2—N3 5.62 (16) C8—C5—C6—O1 2.07 (17)
N2—N1—C2—N3 172.15 (10) C4—C5—C6—N1 −0.23 (15)
N4—C2—N3—C4 178.49 (10) C8—C5—C6—N1 −178.04 (9)
N1—C2—N3—C4 −3.40 (16) C2—N1—N2—C10 141.55 (10)
C2—N3—C4—C5 −0.54 (16) C6—N1—N2—C10 −51.78 (13)
C2—N3—C4—S1 −179.55 (8) N1—N2—C10—C11 174.68 (9)
C7—S1—C4—N3 −6.30 (10) N2—C10—C11—C15 −171.31 (11)
C7—S1—C4—C5 174.63 (9) N2—C10—C11—S12 5.22 (15)
N3—C4—C5—C8 179.96 (11) C15—C11—S12—C13 0.11 (9)
S1—C4—C5—C8 −1.01 (15) C10—C11—S12—C13 −176.84 (10)
N3—C4—C5—C6 2.31 (17) C11—S12—C13—C14 0.08 (10)
S1—C4—C5—C6 −178.67 (8) S12—C13—C14—C15 −0.25 (14)
C2—N1—C6—O1 176.40 (10) C10—C11—C15—C14 176.64 (10)
N2—N1—C6—O1 10.60 (15) S12—C11—C15—C14 −0.26 (13)
C2—N1—C6—C5 −3.50 (15) C13—C14—C15—C11 0.33 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N4—H041···N2 0.827 (18) 2.224 (17) 2.6062 (13) 108.4 (14)
N4—H041···N5i 0.827 (18) 2.513 (17) 3.0555 (14) 124.2 (15)
N4—H042···O1i 0.823 (17) 2.144 (17) 2.9414 (12) 163.1 (15)
C13—H13···N5ii 0.95 2.49 3.2722 (15) 139
C10—H10···O1iii 0.95 2.35 3.2124 (13) 150

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x+1, −y+3/2, z−1/2; (iii) x, −y+3/2, z−1/2.

References

  1. Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
  2. Elgemeie, G. H. (2003). Curr. Pharm. Des. 9, 2627–2642. [DOI] [PubMed]
  3. Elgemeie, G. H. & Hussain, B. A. (1994). Tetrahedron, 50, 199–204.
  4. Elgemeie, G. H. & Sood, S. A. (2001). J. Chem. Res. (S), pp. 439–441.
  5. Elgemeie, G. H., Zaghary, W. A., Amin, K. M. & Nasr, T. M. (2009). J. Carbohydr. Chem. 28, 161–178.
  6. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  7. Scala, S., Akhmed, N., Rao, U. S., Paul, K., Lan, L., Dickstein, B., Lee, J., Elgemeie, G. H., Stein, W. D. & Bates, S. E. (1997). Mol. Pharm. 51, 1024–1033. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S205698901501885X/su5217sup1.cif

e-71-01319-sup1.cif (21.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901501885X/su5217Isup2.hkl

e-71-01319-Isup2.hkl (188.2KB, hkl)

CCDC reference: 1430030

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES